Heart failure is one of the leading causes of death worldwide. RhoA, a small GTPase, governs actin dynamics in various tissue and cell types, including cardiomyocytes; however, its involvement in cardiac function has not been fully elucidated. Here, we generated cardiomyocyte-specific RhoA conditional knockout (cKO) mice, which demonstrated a significantly shorter lifespan with left ventricular dilation and severely impaired ejection fraction.
View Article and Find Full Text PDFBrugada syndrome (BrS) is an inherited channelopathy responsible for almost 20% of sudden cardiac deaths in patients with nonstructural cardiac diseases. Approximately 70% of BrS patients, the causative gene mutation(s) remains unknown. In this study, we used whole exome sequencing to investigate candidate mutations in a family clinically diagnosed with BrS.
View Article and Find Full Text PDFBackground: Bradyarrhythmia is a common clinical manifestation. Although the majority of cases are acquired, genetic analysis of families with bradyarrhythmia has identified a growing number of causative gene mutations. Because the only ultimate treatment for symptomatic bradyarrhythmia has been invasive surgical implantation of a pacemaker, the discovery of novel therapeutic molecular targets is necessary to improve prognosis and quality of life.
View Article and Find Full Text PDFBackground: In the heart, slow delayed rectifier channels provide outward currents (I) for action potential (AP) repolarization in a region- and context-dependent manner. In diseased hearts, chronic elevation of angiotensin II (Ang II) may remodel I in a region-dependent manner, contributing to atrial and ventricular arrhythmias of different mechanisms.
Objective: The purpose of this study was to study whether/how chronic in vivo Ang II administration remodels I in atrial and ventricular myocytes.
Tumor metastasis is the most common cause of cancer death. Elucidation of the mechanism of tumor metastasis is therefore important in the development of novel, effective anti-cancer therapies to reduce cancer mortality. Interaction between cancer cells and surrounding stromal cells in the tumor microenvironment is a key factor in tumor metastasis.
View Article and Find Full Text PDFVascular endothelial growth factors (VEGFs) include five molecules (VEGF-A, -B, -C, -D, and placental growth factor), and have various roles that crucially regulate cellular functions in many kinds of cells and tissues. Intracellular signal transduction induced by VEGFs has been extensively studied and is usually initiated by their binding to two classes of transmembrane receptors: receptor tyrosine kinase VEGF receptors (VEGF receptor-1, -2 and -3) and neuropilins (NRP1 and NRP2). In addition to many established results reported by other research groups, we have previously identified small G proteins, especially Ras homologue gene (Rho) and Ras-related protein (Rap), as important mediators of VEGF-A-stimulated signaling in cancer cells as well as endothelial cells.
View Article and Find Full Text PDFBackground: Pressure overload induces cardiac hypertrophy, which often ends in heart failure. Afadin is an adaptor protein that is ubiquitously expressed and, in the heart, it localizes at intercalated disks. The current study aimed to examine the afadin-mediated cardiac phenotype in mice exposed to different types of pressure overload: transverse aortic constriction (TAC) burden and angiotensin II (Ang II) stimulation.
View Article and Find Full Text PDFAdhesive intercellular connections at cardiomyocyte intercalated disks (IDs) support contractile force and maintain structural integrity of the heart muscle. Disturbances of the proteins at IDs deteriorate cardiac function and morphology. An adaptor protein afadin, one of the components of adherens junctions, is expressed ubiquitously including IDs.
View Article and Find Full Text PDFDipeptidyl peptidase III (DPP III) cleaves dipeptide residues from the N terminus of polypeptides ranging from 3 to 10 amino acids in length and is implicated in pathophysiological processes through the breakdown of certain oligopeptides or their fragments. In this study, we newly identified the biochemical properties of DPP III for angiotensin II (Ang II), which consists of 8 amino acids. DPP III quickly and effectively digested Ang II with Km = 3.
View Article and Find Full Text PDFVasculature is present in all tissues and therefore is indispensable for development, biology, and pathology of multicellular organisms. Endothelial cells guarantee proper function of the vessels and are the original component in angiogenesis. Morphogenesis of the vascular system utilizes processes like cell adhesion, motility, proliferation, and survival that are closely related to the dynamics of actin filaments and actin-tethered adhesion complexes.
View Article and Find Full Text PDFZn-α2-glycoprotein (ZAG) (molecular weight=41 kDa) is one component in the α2 fraction of human plasma, and is reported to be associated with several diseases, such as cancers and metabolic syndromes. ZAG is also considered to be an important modulator of lipid metabolism. However, little is known about the correlation of serum ZAG levels with indicators of metabolic syndrome.
View Article and Find Full Text PDFAim: Mutations in lipoprotein-associated phospholipase A2 (Lp-PLA2) are related to atherosclerosis. However, the molecular effects of Lp-PLA2 on atherosclerosis have not been fully investigated. Therefore, this study attempted to elucidate this issue.
View Article and Find Full Text PDFOur goals are to simultaneously determine the three-dimensional distribution patterns of KCNQ1 and KCNE1 in cardiac myocytes and to study the mechanism and functional implications for variations in KCNQ1/KCNE1 colocalization in myocytes. We monitored the distribution patterns of KCNQ1, KCNE1, and markers for subcellular compartments/organelles using immunofluorescence/confocal microscopy and confirmed the findings in ventricular myocytes by directly observing fluorescently tagged KCNQ1-GFP and KCNE1-dsRed expressed in these cells. We also monitored the effects of stress on KCNQ1-GFP and endoplasmic reticulum (ER) remodeling during live cell imaging.
View Article and Find Full Text PDFAfadin is an intracellular binding partner of nectins, cell-cell adhesion molecules, and plays important roles in the formation of cell-cell junctions. Afadin-knockout mice show early embryonic lethality, therefore little is known about the function of afadin during organ development. In this study, we generated mice lacking afadin expression in endothelial cells, and found that the majority of these mice were embryonically lethal as a result of severe subcutaneous edema.
View Article and Find Full Text PDFKCNE1 associates with KCNQ1 to increase its current amplitude and slow the activation gating process, creating the slow delayed rectifier channel that functions as a "repolarization reserve" in human heart. The transmembrane domain (TMD) of KCNE1 plays a key role in modulating KCNQ1 pore conductance and gating kinetics, and the extracellular juxtamembrane (EJM) region plays a modulatory role by interacting with the extracellular surface of KCNQ1. KCNE2 is also expressed in human heart and can associate with KCNQ1 to suppress its current amplitude and slow the deactivation gating process.
View Article and Find Full Text PDFKCNE2 functions as an auxiliary subunit in voltage-gated K and HCN channels in the heart. Genetic variations in KCNE2 have been linked to long QT syndrome. The underlying mechanisms are not entirely clear.
View Article and Find Full Text PDFCirc Arrhythm Electrophysiol
June 2011
Background: Brugada syndrome (BrS) has a significantly higher incidence among the male sex. Among genes coding ion channels and their modulatory proteins, KCNE5 (KCNE1L) is located in the X chromosome and encodes an auxiliary β-subunit for K channels. KCNE5 has been shown to modify the transient outward current (I(to)), which plays a key role in determining the repolarization process in the myocardium.
View Article and Find Full Text PDFHL-1 is the adult murine cardiac cell line that can be passaged repeatedly in vitro without losing differentiated phenotype. The present study was designed to characterize the rapidly activating delayed rectifier potassium current, I (Kr), endogenously expressed in HL-1 cells using the whole-cell patch-clamp technique. In the presence of nisoldipine, depolarizing voltage steps applied from a holding potential of -50 mV evoked the time-dependent outward current, followed by slowly decaying outward tail current upon return to the holding potential.
View Article and Find Full Text PDFA repolarizing conduction in the heart augmented by hyposmotic or mechanically induced membrane stretch is the slow component of delayed rectifier K(+) current (I (Ks)). I (Ks) upregulation is recognized as a factor promoting appearance of atrial fibrillation (AF) since gain-of-function mutations of the channel genes have been detected in congenital AF. Mechanical stretch activates angiotensin II type 1 (AT(1)) receptor in the absence of its physiological ligand angiotensin II.
View Article and Find Full Text PDFBackground: Long QT syndromes (LQTS) are inherited diseases involving mutations to genes encoding a number of cardiac ion channels and a membrane adaptor protein. The MinK protein is a cardiac K-channel accessory subunit encoded by the KCNE1 gene, mutations of which are associated with the LQT5 form of LQTS.
Objective: The purpose of this study was to search for the KCNE1 mutations and clarify the function of those mutations.
Background: Angiotensin II (Ang II) has diverse actions on cardiac electrical activity. Little information is available, however, regarding immediate electrophysiological effects of Ang II on cardiac repolarization.
Methods And Results: The present study investigated the immediate effects of Ang II on the slow component of delayed rectifier K+ current (IKs) and action potentials in guinea pig atrial myocytes using the whole-cell patch-clamp technique.
Background: Stimulation of angiotensin II type 1 (AT(1)) receptors has been shown to generate the arrhythmogenic substrate in ventricular hypertrophy. We examined whether candesartan, an AT1 receptor blocker, has antiarrhythmic effects on mouse model of left ventricular hypertrophy created by transverse aorta constriction (TAC).
Methods And Results: Forty-eight male mice were divided into 3 groups: TAC, candesartan (TAC plus candesartan) and control groups.
Introduction: The aim of the present study was to investigate the acute action of amiodarone on the slow component of delayed rectifier K+ current (IKs) under basal conditions and during beta-adrenoceptor stimulation in guinea pig ventricular myocytes.
Methods And Results: Using the whole-cell patch-clamp method, IKs was evoked by depolarizing voltage-clamp steps, during superfusion with the Na+-, K+-, and Ca2+-free solution supplemented with 0.4 microM nisoldipine and 5 microM E-4031.