Publications by authors named "Dimitar Gavrilov"

Transferrin isoform analysis is an established laboratory test for congenital disorders of glycosylation (CDG). Despite its long history of clinical use, little has been published about its empirical sensitivity for specific conditions. We conducted a retrospective analysis of ten years of testing data and report our experience with transferrin testing for type I profiles and its sensitivity for the most common congenital disorder of glycosylation, PMM2-CDG.

View Article and Find Full Text PDF

Treatment of phenylketonuria (PKU) has evolved since the initial introduction of a phenylalanine (Phe) restricted diet. The most recent option for adults affected with PKU is treatment with an alternate enzyme, phenylalanine ammonia lyase (PAL), that metabolizes excess Phe. Proper management of all patients with PKU relies on accurate measurement of Phe levels in blood, to comply with guidance intended to minimize the neurological symptoms.

View Article and Find Full Text PDF

Creatine transporter deficiency has been described with normal or uninformative levels of creatine and creatinine in plasma, while urine has been the preferred specimen type for biochemical diagnosis. We report a cohort of untreated patients with creatine transporter deficiency and abnormal plasma creatine panel results, characterized mainly by markedly decreased plasma creatinine. We conclude that plasma should be considered a viable specimen type for the biochemical diagnosis of this disorder, and abnormal results should be followed up with further confirmatory testing.

View Article and Find Full Text PDF

Measurement of plasmalogens is useful for the biochemical diagnosis of rhizomelic chondrodysplasia punctata (RCDP) and is also informative for Zellweger spectrum disorders (ZSD). We have developed a test method for the simultaneous quantitation of C16:0, C18:0, and C018:1 plasmalogen (PG) species and their corresponding fatty acids (FAs) in dried blood spots (DBS) and erythrocytes (RBC) by using capillary gas chromatography-mass spectrometry. Normal reference ranges for measured markers and 10 calculated ratios were established by the analysis of 720 and 473 unaffected DBS and RBC samples, respectively.

View Article and Find Full Text PDF

Background: Glutaric acidemia type I (GA1) is an organic acidemia that is often unrecognized in the newborn period until patients suffer an acute encephalopathic crisis, which can be mistaken for nonaccidental trauma. Presymptomatic identification of GA1 patients is possible by newborn screening (NBS). However, the biochemical "low-excretor" (LE) phenotype with nearly normal levels of disease metabolites can be overlooked, which may result in untreated disease and irreversible neurological sequelae.

View Article and Find Full Text PDF

Phosphoglucomutase 1 (PGM1) catalyzes the interconversion of glucose-6-phosphate to glucose-1-phosphate and is a key enzyme of glycolysis, glycogenesis, and glycogenolysis. PGM1 deficiency (OMIM: 614921) was initially defined as a glycogen storage disorder (type XIV), and later re-classified as a PGM1-congenital disorder of glycosylation (PGM1-CDG). Serum transferrin (Tf) glycan isoform analysis by liquid chromatography-mass spectrometry (LC-MS) is used as a primary diagnostic screen tool, and reveals a very unique CDG profile described as a mixture of CDG-type I and CDG-type II patterns.

View Article and Find Full Text PDF

The expansion of the recommend uniform screening panel to include more than 50 primary and secondary target conditions has resulted in a substantial increase of false positive results. As an alternative to subjective manipulation of cutoff values and overutilization of molecular testing, here we describe the performance outcome of an algorithm for disorders of methionine, cobalamin, and propionate metabolism that includes: (1) first tier screening inclusive of the broadest available spectrum of markers measured by tandem mass spectrometry; (2) integration of all results into a score of likelihood of disease for each target condition calculated by post-analytical interpretive tools created byCollaborative Laboratory Integrated Reports (CLIR), a multivariate pattern recognition software; and (3) further evaluation of abnormal scores by a second tier test measuring homocysteine, methylmalonic acid, and methylcitric acid. This approach can consistently reduce false positive rates to a <0.

View Article and Find Full Text PDF

Enzyme-based newborn screening for Mucopolysaccharidosis type I (MPS I) has a high false-positive rate due to the prevalence of pseudodeficiency alleles, often resulting in unnecessary and costly follow up. The glycosaminoglycans (GAGs), dermatan sulfate (DS) and heparan sulfate (HS) are both substrates for α-l-iduronidase (IDUA). These GAGs are elevated in patients with MPS I and have been shown to be promising biomarkers for both primary and second-tier testing.

View Article and Find Full Text PDF
Article Synopsis
  • Glycosylation is essential for the immune system's development and function, with abnormalities linked to issues like antibody deficiency and lymphocyte signaling problems.
  • Human MGAT2 is a key gene in the production of complex N-glycans, necessary for immune functionality, and mutations can lead to disorders like MGAT2-CDG, which causes severe developmental issues and various medical complications.
  • A case study of a 4-year-old girl with a novel mutation in MGAT2 highlights unique clinical features and contrasts with previous cases, enhancing the understanding of MGAT2-CDG’s genetic and phenotypic diversity.
View Article and Find Full Text PDF

Newborn screening for one or more lysosomal disorders has been implemented in several US states, Japan and Taiwan by multiplexed enzyme assays using either tandem mass spectrometry or digital microfluidics. Another multiplex assay making use of immunocapture technology has also been proposed. To investigate the potential variability in performance of these analytical approaches, we implemented three high-throughput screening assays for the simultaneous screening for four lysosomal disorders: Fabry disease, Gaucher disease, mucopolysaccharidosis type I, and Pompe disease.

View Article and Find Full Text PDF

Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is a rare autosomal recessive disorder of β-oxidation caused by pathogenic variants in the gene. Analyte testing for SCADD in blood and urine, including newborn screening (NBS) using tandem mass spectrometry (MS/MS) on dried blood spots (DBSs), is complicated by the presence of two relatively common variants (c.625G>A and c.

View Article and Find Full Text PDF

Background: The prognosis of patients with Hereditary Tyrosinemia Type 1 (HT-1) has greatly improved with early detection through newborn screening and the introduction of nitisinone (NTBC) therapy. A recent guideline calls for periodic monitoring of biochemical markers and NTBC levels to tailor treatment; however, this is currently only achieved through a combination of clinical laboratory tests. We developed a multiplexed assay measuring relevant amino acids, succinylacetone (SUAC), and NTBC in dried blood spots (DBS) to facilitate treatment monitoring.

View Article and Find Full Text PDF

Purpose: Newborn screening (NBS) for Krabbe disease (KD) is performed by measurement of galactocerebrosidase (GALC) activity as the primary test. This revealed that GALC activity has poor specificity for KD. Psychosine (PSY) was proposed as a disease marker useful to reduce the false positive rate for NBS and for disease monitoring.

View Article and Find Full Text PDF

Purpose: To describe an efficient and effective multiplex screening strategy for sulfatide degradation disorders and mucolipidosis type II/III (MLII/III) using 3 mL of urine.

Methods: Glycosaminoglycans were analyzed by liquid chromatography-tandem mass spectrometry. Matrix assisted laser desorption/ionization-time of flight tandem mass spectrometry was used to identify free oligosaccharides and identify 22 ceramide trihexosides and 23 sulfatides, which are integrated by 670 calculated ratios.

View Article and Find Full Text PDF

Background: Spinal muscular atrophy (SMA) is a progressive neuromuscular disorder with neuronal degeneration leading to muscular atrophy and respiratory failure. SMA is frequently caused by homozygous deletions that include exon 7 of the survival motor neuron gene , and its clinical course is influenced by the copy number of a nearby 5q paralog, . Multiple ligation probe amplification (MLPA) and real-time quantitative PCR (qPCR) can detect deletions.

View Article and Find Full Text PDF
Article Synopsis
  • Elevated plasma and urine levels of formiminoglutamic acid (FIGLU) usually indicate a rare genetic disorder called formiminoglutamic aciduria, caused by a deficiency in the FTCD enzyme involved in histidine and folate metabolism.
  • Researchers sequenced the FTCD gene in 20 individuals suspected of having FTCD deficiency, finding biallelic loss-of-function variants that contribute to increased FIGLU excretion.
  • The study identified 12 different mutations in the FTCD gene, providing molecular insights that support the diagnosis of FTCD deficiency in those detected through newborn screening and genetic testing.
View Article and Find Full Text PDF

Purpose: The implementation of newborn screening for lysosomal disorders has uncovered overall poor specificity, psychosocial harm experienced by caregivers, and costly follow-up testing of false-positive cases. We report an informatics solution proven to minimize these issues.

Methods: The Kentucky Department for Public Health outsourced testing for mucopolysaccharidosis type I (MPS I) and Pompe disease, conditions recently added to the recommended uniform screening panel, plus Krabbe disease, which was added by legislative mandate.

View Article and Find Full Text PDF

Purpose: To describe a novel biochemical marker in dried blood spots suitable to improve the specificity of newborn screening for Pompe disease.

Methods: The new marker is a ratio calculated between the creatine/creatinine (Cre/Crn) ratio as the numerator and the activity of acid α-glucosidase (GAA) as the denominator. Using Collaborative Laboratory Integrated Reports (CLIR), the new marker was incorporated in a dual scatter plot that can achieve almost complete segregation between Pompe disease and false-positive cases.

View Article and Find Full Text PDF

We report an 8-month-old infant with decreased consciousness after a febrile episode and reduced oral intake. He was profoundly acidotic but his lactate was normal. Serum triglycerides were markedly elevated and HDL cholesterol was very low.

View Article and Find Full Text PDF

Severe combined immunodeficiency (SCID) benefits from early intervention via hematopoietic cell transplantation to reverse T-cell lymphopenia (TCL). Newborn screening (NBS) programs use T-cell receptor excision circle (TREC) levels to detect SCID. Real-time quantitative PCR is often performed to quantify TRECs in dried blood spots (DBSs) for NBS.

View Article and Find Full Text PDF

Background: Cystinuria is an autosomal recessive disorder resulting in poor proximal tubule reabsorption of cystine in the nephron, increasing the risk of cystine stone formation. A fast, inexpensive assay to screen for urinary cystine is needed because cystine stones are difficult to noninvasively differentiate from more common calcium-containing ones. Tandem mass spectrometry (MS/MS) is sensitive and specific but is labor-intensive and costly.

View Article and Find Full Text PDF

Background: Newborn screening for lysosomal storage disorders (LSD) has revealed that late-onset variants of these conditions are unexpectedly frequent and therefore may evade diagnosis. We developed an efficient and cost-effective multiplex assay to diagnose six LSDs and several peroxisomal disorders in patients presenting with diverse phenotypes at any age.

Methods: Three 3-mm dried blood spot (DBS) punches were placed into individual microtiter plates.

View Article and Find Full Text PDF

Tyrosinemia type I (TYRSN1, TYR I) is caused by fumarylacetoacetate hydrolase (FAH) deficiency and affects approximately one in 100,000 individuals worldwide. Pathogenic variants in FAH cause TYRSN1, which induces cirrhosis and can progress to hepatocellular carcinoma (HCC). TYRSN1 is characterized by the production of a pathognomonic metabolite, succinylacetone (SUAC) and is included in the Recommended Uniform Screening Panel for newborns.

View Article and Find Full Text PDF