Point-of-care testing (POCT) is becoming an increasingly popular way to perform laboratory tests closer to the patient. This option has several recognized advantages, such as accessibility, portability, speed, convenience, ease of use, ever-growing test panels, lower cumulative healthcare costs when used within appropriate clinical pathways, better patient empowerment and engagement, and reduction of certain pre-analytical errors, especially those related to specimen transportation. On the other hand, POCT also poses some limitations and risks, namely the risk of lower accuracy and reliability compared to traditional laboratory tests, quality control and connectivity issues, high dependence on operators (with varying levels of expertise or training), challenges related to patient data management, higher costs per individual test, regulatory and compliance issues such as the need for appropriate validation prior to clinical use (especially for rapid diagnostic tests; RDTs), as well as additional preanalytical sources of error that may remain undetected in this type of testing, which is usually based on whole blood samples (i.
View Article and Find Full Text PDFMicrobiol Spectr
January 2024
We have previously highlighted the fact that hundreds of SARS-CoV-2 serology tests were released months after the onset of the COVID-19 pandemic. Of the hundreds of studies investigating the test kits' performance, few were comparative reports, using the same comprehensive sample set across multiple tests. Recently, we reported a comparative assessment of 35 rapid diagnostic tests (RDTs) or microtiter plate enzyme immunoassays (EIA) for use in low- and middle-income countries, using a large sample set from individuals with a history of COVID-19.
View Article and Find Full Text PDFThe onset of the coronavirus disease 2019 (COVID-19) pandemic resulted in hundreds of diagnostic devices (IVDs) coming to market, facilitated by regulatory authorities allowing "emergency use" without a comprehensive evaluation of performance. The World Health Organization (WHO) released target product profiles (TPPs) specifying acceptable performance characteristics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) assay devices. We evaluated 26 rapid diagnostic tests and 9 enzyme immunoassays (EIAs) for anti-SARS-CoV-2, suitable for use in low- and middle-income countries (LMICs), against these TPPs and other performance characteristics.
View Article and Find Full Text PDFClin Chem Lab Med
February 2023
As testing for infectious diseases moves from manual, biological testing such as complement fixation to high throughput automated autoanalyzer, the methods for controlling these assays have also changed to reflect those used in clinical chemistry. However, there are many differences between infectious disease serology and clinical chemistry testing, and these differences have not been considered when applying traditional quality control methods to serology. Infectious disease serology, which is highly regulated, detects antibodies of varying classes and to multiple and different antigens that change according to the organisms' genotype/serotype and stage of disease.
View Article and Find Full Text PDFAll patients should have access to accurate and timely test results. The introduction of point of care testing (PoCT) for infectious diseases has facilitated access to those unable to access traditional laboratory-based medical testing, including those living in remote and regional locations, or individuals who are marginalized or incarcerated individuals. In many countries, laboratory testing for infectious diseases, such as hepatitis C virus (HCV), is performed in a highly regulated environment.
View Article and Find Full Text PDFClin Microbiol Rev
December 2021
Historically, the detection of antibodies against infectious disease agents was achieved using test systems that utilized biological functions such as neutralization, complement fixation, hemagglutination, or visualization of binding of antibodies to specific antigens, by testing doubling dilutions of the patient sample to determine an endpoint. These test systems have since been replaced by automated platforms, many of which have been integrated into general medical pathology. Methods employed to standardize and control clinical chemistry testing have been applied to these serology tests.
View Article and Find Full Text PDFVariants in the small surface gene of hepatitis B virus (HBV), which codes for viral surface antigen (HBsAg), can affect the efficacy of HBsAg screening assays and can be associated with occult HBV infection (OBI). This study aimed to characterise the molecular diversity of the HBV small surface gene from HBV-reactive Australian blood donors. HBV isolates from 16 HBsAg-positive Australian blood donors' plasma were sequenced and genotyped by phylogenies of viral coding genes and/or whole genomes.
View Article and Find Full Text PDFHIV viral load (VL) and donor screening assays experience variation and require quaity assurance (QA). NRL sought to confirm a dried tube sample format (HIVDTS) sample type for use in quality control (QC) programs for HIV molecular testing. 50 μL of HIV supernatant at 1 × 10 copies per millilitre (copies/mL)) was dried for 48 hours at room temperature.
View Article and Find Full Text PDFBackground: Current point-of-care tests (POCT) for syphilis, based on the detection of (TP) total antibodies, have limited capacity in distinguishing between active and past/treated syphilis. We report the development and early evaluation of a new prototype POCT based on the detection of TP-IgA antibodies, a novel biomarker for active syphilis.
Methods: The TP-IgA POCT (index test) was developed in response to the World Health Organisation (WHO) target product profile (TPP) for a POCT for confirmatory syphilis testing.
Background Laboratories use quality control (QC) testing to monitor the extent of normal variation. Assay lot number changes contribute the greatest amount of variation in infectious disease serology testing. An unexpected change in six lots of an anti-HCV assay allowed the determination of the effect these lot changes made to the assay's clinical sensitivity.
View Article and Find Full Text PDFThe WHO international standard for anti-rubella was first established in the 1960s when clinical diagnostics were in their infancy. Since the endorsement of the first international standard for anti-rubella IgG (RUBI-1-94), new rubella vaccines have been developed and global coverage of rubella vaccination has increased. Methods used to measure concentrations of anti-rubella IgG have also evolved to rapid, high-throughput binding assays, which have replaced often cumbersome and highly technical functional assays.
View Article and Find Full Text PDFBackground: Passive surveillance is the principal method of sexually transmitted infection (STI) and blood-borne virus (BBV) surveillance in Australia whereby positive cases of select STIs and BBVs are notified to the state and territory health departments. A major limitation of passive surveillance is that it only collects information on positive cases and notifications are heavily dependent on testing patterns. Denominator testing data are important in the interpretation of notifications.
View Article and Find Full Text PDFUnlabelled: Background A priority area in the 2016 Victorian Hepatitis B Strategy is to increase diagnostic testing. This study describes hepatitis B testing and positivity trends in Victoria between 2011 and 2016 using data from a national laboratory sentinel surveillance system.
Methods: Line-listed diagnostic and monitoring hepatitis B testing data among Victorian individuals were collated from six laboratories participating in the Australian Collaboration for Coordinated Enhanced Sentinel Surveillance (ACCESS) of sexually transmissible infections and blood-borne viruses.
Background: New biomedical prevention interventions make the control or elimination of some blood-borne viruses (BBVs) and sexually transmissible infections (STIs) increasingly feasible. In response, the World Health Organization and governments around the world have established elimination targets and associated timelines. To monitor progress toward such targets, enhanced systems of data collection are required.
View Article and Find Full Text PDFAlong with the reduction in human papillomavirus (HPV) infection and cervical abnormalities as a result of the successful HPV vaccination program, Australia is adopting a new screening strategy. This involves a new paradigm moving from cervical cytological screening to molecular nucleic acid technology (NAT), using HPV DNA assays as primary screening methodology for cervical cancer prevention. These assays must strike a balance between sufficient clinical sensitivity to detect or predict high-grade cervical intraepithelial lesions, the precursor to cervical cancer, without being too sensitive and detecting transient infection not destined for disease.
View Article and Find Full Text PDFBackground: A general trend towards conducting infectious disease serology testing in centralized laboratories means that quality control (QC) principles used for clinical chemistry testing are applied to infectious disease testing. However, no systematic assessment of methods used to establish QC limits has been applied to infectious disease serology testing.
Methods: A total of 103 QC data sets, obtained from six different infectious disease serology analytes, were parsed through standard methods for establishing statistical control limits, including guidelines from Public Health England, USA Clinical and Laboratory Standards Institute (CLSI), German Richtlinien der Bundesärztekammer (RiliBÄK) and Australian QConnect.
Quantification of Cytomegalovirus (CMV) DNA is required for the initiation and monitoring of anti-viral treatment and the detection of viral resistance. However, due to the lack of standardisation of CMV DNA nucleic acid tests, it is difficult to set universal thresholds. In 2010, the 1st WHO International Standard for Human Cytomegalovirus for Nucleic Acid Amplification Techniques was released.
View Article and Find Full Text PDFThe determination of the seroprevalence of vaccine-preventable diseases is critical in monitoring the efficacy of vaccination programmes and to assess the gaps in population immunity but requires extensive organisation and is time and resource intensive. The results of the studies are frequently reported in peer-reviewed scientific, government and non-government publications. A review of scientific literature was undertaken to advise the development of WHO guidelines for the assessment of measles and rubella seroprevalence.
View Article and Find Full Text PDF