Publications by authors named "Dimas Mendes Ribeiro"

Abscisic acid (ABA) transport in plants is necessary to regulate developmental plasticity and responses to environmental signals. Plants use ABA exporter ATP-binding cassette G25 (ABCG25) to control ABA homeostasis. Three recent papers (Huang et al.

View Article and Find Full Text PDF

Seed development, dormancy, and germination are connected with changes in metabolite levels. Not surprisingly, a complex regulatory network modulates biosynthesis and accumulation of storage products. Seed development has been studied profusely in Arabidopsis thaliana and has provided valuable insights into the genetic control of embryo development.

View Article and Find Full Text PDF

Boron (B) is an essential nutrient for the plant, and its stress (both deficiency and toxicity) are major problems that affect crop production. Ethylene metabolism (both signaling and production) is important to plants' differently responding to nutrient availability. To better understand the connections between B and ethylene, here we investigate the function of ethylene in the responses of tomato (Solanum lycopersicum) plants to B stress (deficiency, 0 μM and toxicity, 640 μM), using ethylene related mutants, namely nonripening (nor), ripening-inhibitor (rin), never ripe (Nr), and epinastic (Epi).

View Article and Find Full Text PDF

High rates of fluorosis were reported worldwide as a result of human consumption of water with fluoride contents. Adjusting fluoride concentration in water as recommended by the World Health Organization (<1.5 mg L) is a concern and it needs to be conducted through inexpensive, but efficient techniques, such as phytoremediation.

View Article and Find Full Text PDF

Auxin is an important hormone playing crucial roles during fruit growth and ripening; however, the metabolic impact of changes in auxin signalling during tomato (Solanum lycopersicum L.) ripening remains unclear. Here, we investigated the significance of changes in auxin signalling during different stages of fruit development by analysing changes in tomato fruit quality and primary metabolism using mutants with either lower or higher auxin sensitivity [diageotropica (dgt) and entire mutants, respectively].

View Article and Find Full Text PDF

Nickel (Ni) and glyphosate (Gl) are able to reduce the symptoms of Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, in soybean. However, their combined effects on the energy balance and ethylene metabolism of soybean plants infected with this fungus has not been elucidated. Therefore, the effects of Ni, Gl, and the combination of Ni + Gl on ASR development, photosynthetic capacity, sugar concentrations, and ethylene concentrations in plants of a Gl-resistant cultivar, uninfected or infected with P.

View Article and Find Full Text PDF

Lead (Pb) is a highly toxic heavy metal to plants, animals, and human beings. The use of growth regulators has reversed the effects of heavy metal stress on germination and early plant development. The aim of this study was to evaluate the effect of brassinosteroids on seed germination and seedling growth of Brassica juncea (L.

View Article and Find Full Text PDF

This study aimed to evaluate 1) the influence of gibberellic acid (GA3) in the development of Tifton 85 bermudagrass grown in constructed wetland systems (CWs) and 2) the plant's capacity to remove nutrients and sodium from synthetic municipal wastewater (SMW). The experiment was carried out in Viçosa, Minas Gerais, Brazil, and consisted of foliar applications of GA3 set in randomized blocks design, with four replicates and 6 treatments as following: NC (control with plants); 0 μM GA3; N1: 5 μM GA3; N2: 25 μM GA3; N3: 50 and N4: 100 μM GA3 per CWs, NC* (control with no plants): 0 μM GA3. The study was conducted over two crop cycles in the spring 2016.

View Article and Find Full Text PDF

Oxidative stress causes dramatic changes in the expression levels of many genes. The formation of a functional protein through successful mRNA translation is central to a coordinated cellular response. To what extent the response towards reactive oxygen species (ROS) is regulated at the translational level is poorly understood.

View Article and Find Full Text PDF