Publications by authors named "Dimartino Clemantine"

Primary cilia (PC) are non-motile dynamic microtubule-based organelles that protrude from the surface of most mammalian cells. They emerge from the older centriole during the G1/G0 phase of the cell cycle, while they disassemble as the cells re-enter the cell cycle at the G2/M phase boundary. They function as signal hubs, by detecting and transducing extracellular signals crucial for many cell processes.

View Article and Find Full Text PDF

Purpose: Biallelic hypomorphic variants in PPA2, encoding the mitochondrial inorganic pyrophosphatase 2 protein, have been recently identified in individuals presenting with sudden cardiac death, occasionally triggered by alcohol intake or a viral infection. Here we report 20 new families harboring PPA2 variants.

Methods: Synthesis of clinical and molecular data concerning 34 individuals harboring five previously reported PPA2 variants and 12 novel variants, 11 of which were functionally characterized.

View Article and Find Full Text PDF

Acrofrontofacionasal dysostosis type 1 (AFFND1) is an extremely rare disorder characterized by several dysmorphic features, skeletal abnormalities and intellectual disability, and described only in seven patients in the literature. A biallelic variant in the Neuroblastoma Amplified Sequence (NBAS) gene was recently identified in two Indian patients with AFFND1. Here we report genetic investigation of AFFND1 in the originally described Brazilian families and the identification of an extremely rare, recessively-inherited, intronic variant in the Phosphatidylinositol Glycan class B (PIGB) gene NC_000015.

View Article and Find Full Text PDF

The genetic causes of multiple congenital anomalies are incompletely understood. Here, we report novel heterozygous predicted loss-of-function (LoF) and predicted damaging missense variants in the WW domain binding protein 11 (WBP11) gene in seven unrelated families with a variety of overlapping congenital malformations, including cardiac, vertebral, tracheo-esophageal, renal and limb defects. WBP11 encodes a component of the spliceosome with the ability to activate pre-messenger RNA splicing.

View Article and Find Full Text PDF

Human pluripotent stem cells offer a limitless source of cells for regenerative medicine. They are also highly valuable as tools to study development and pathologies or as cellular substrates to screen and test new drugs. We generated human induced pluripotent stem cell (hiPSC) lines from two unrelated healthy control donors.

View Article and Find Full Text PDF

Purpose: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts.

Methods: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers.

View Article and Find Full Text PDF

MN1 encodes a transcriptional co-regulator without homology to other proteins, previously implicated in acute myeloid leukaemia and development of the palate. Large deletions encompassing MN1 have been reported in individuals with variable neurodevelopmental anomalies and non-specific facial features. We identified a cluster of de novo truncating mutations in MN1 in a cohort of 23 individuals with strikingly similar dysmorphic facial features, especially midface hypoplasia, and intellectual disability with severe expressive language delay.

View Article and Find Full Text PDF
Article Synopsis
  • * A study identified 19 individuals with various health issues such as growth failure and microcephaly, all linked to genetic changes in the ZMIZ1 gene, including single-nucleotide variants and translocations.
  • * Experiments showed that mutations in ZMIZ1 lead to problems in brain cell development in mice, indicating its critical role in neural development and confirming its link to a rare neurodevelopmental syndrome.
View Article and Find Full Text PDF