The global pandemic of metabolic diseases has increased the incidence of hepatocellular carcinoma (HCC) in the context of non-alcoholic steatohepatitis (NASH). The downregulation of the E3 ubiquitin ligase TRIM21 has been linked to poor prognosis in different cancers including HCC. In order to investigate the role of TRIM21 in liver cancer progression on NASH, Trim21 and Trim21 male mice were injected with streptozotocin at the neonatal stage.
View Article and Find Full Text PDFSibiriline is a novel drug inhibiting receptor-interacting protein 1 kinase (RIPK1) and necroptosis, a regulated form of cell death involved in several disease models. In this study, we aimed to investigate the metabolic fate of sibiriline in a cross-sectional manner using an in silico prediction, coupled with in vitro and in vivo experiments. In silico predictions were performed using GLORYx and Biotransformer 3.
View Article and Find Full Text PDFSome life-threatening acute hepatitis originates from drug-induced liver injury (DILI). Carbon tetrachloride (CCl)-induced acute liver injury in mice is the widely used model of choice to study acute DILI, which pathogenesis involves a complex interplay of oxidative stress, necrosis, and apoptosis. Since the receptor interacting protein kinase-1 (RIPK1) is able to direct cell fate towards survival or death, it may potentially affect the pathological process of xenobiotic-induced liver damage.
View Article and Find Full Text PDFNon-alcoholic steatohepatitis (NASH), a chronic liver disease that emerged in industrialized countries, can further progress into liver fibrosis, cirrhosis, and hepatocellular carcinoma. In the next decade, NASH is predicted to become the leading cause of liver transplantation, the only current interventional therapeutic option. Hepatocyte death, triggered by different death ligands, plays key role in its progression.
View Article and Find Full Text PDFNigratine (also known as 6E11), a flavanone derivative of a plant natural product, was characterized as highly specific non-ATP competitive inhibitor of RIPK1 kinase, one of the key components of necroptotic cell death signaling. We show here that nigratine inhibited both necroptosis (induced by Tumor Necrosis Factor-α) and ferroptosis (induced by the small molecules glutamate, erastin, RSL3 or cumene hydroperoxide) with EC in the µM range. Taken together, our data showed that nigratine is a dual inhibitor of necroptosis and ferroptosis cell death pathways.
View Article and Find Full Text PDFThe globally prevalent disease, non-alcoholic steatohepatitis (NASH), is characterized by a steatotic and inflammatory liver. In NASH patients, tissue repair mechanisms, activated by the presence of chronic liver damage, lead to the progressive onset of hepatic fibrosis. This scar symptom is a key prognostic risk factor for liver-related morbidity and mortality.
View Article and Find Full Text PDFThe purpose of this work is to investigate the protein kinase inhibitory activity of constituents from stem bark. Column chromatography and NMR spectroscopy were used to purify and characterize betulin from an ethyl acetate soluble fraction of acacia bark. Betulin, a known inducer of apoptosis, was screened against a panel of 16 disease-related protein kinases.
View Article and Find Full Text PDFTumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a well-known apoptosis inducer and a potential anticancer agent. When caspases and inhibitors of apoptosis proteins (IAPs) are inhibited, TRAIL induces necroptosis. Molecular mechanisms of necroptosis rely on kinase activation, and on the formation of a necrosome complex, bringing together the receptor-interacting protein kinases 1 and 3 (RIPK1, RIPK3), and the mixed lineage kinase domain-like protein (MLKL).
View Article and Find Full Text PDFThe increase of the sedentary lifestyle and high-calorie diet have modified the etiological landscape of hepatocellular carcinoma (HCC), with a recrudescence of non-alcoholic fatty liver disease (NAFLD), especially in Western countries. The purpose of our study was to evaluate the impact of high-fat diet feeding on non-alcoholic steatohepatitis (NASH) establishment and HCC development. Streptozotocin-induced diabetic male mice were fed with high-fat-high-cholesterol diet (HFHCD) or high-fat-high-sugar diet (HFHSD) from 1 to 16 weeks.
View Article and Find Full Text PDFThe protein kinase RIPK1 plays a crucial role at the crossroad of stress-induced signaling pathways that affects cell's decision to live or die. The present study aimed to define the role of RIPK1 in hepatocytes during fulminant viral hepatitis, a worldwide syndrome mainly observed in hepatitis B virus (HBV) infected patients. Mice deficient for RIPK1, specifically in liver parenchymal cells (Ripk1) and their wild-type littermates (Ripk1), were challenged by either the murine hepatitis virus type 3 (MHV3) or poly I:C, a synthetic analog of double-stranded RNA mimicking viral pathogen-associated molecular pattern.
View Article and Find Full Text PDFNecroptosis is a programmed cell death pathway that has been shown to be of central pathophysiological relevance in multiple disorders (hepatitis, brain and cardiac ischemia, pancreatitis, viral infection and inflammatory diseases). Necroptosis is driven by two serine threonine kinases, RIPK1 (Receptor Interacting Protein Kinase 1) and RIPK3, and a pseudo-kinase MLKL (Mixed Lineage Kinase domain-Like) associated in a multi-protein complex called necrosome. In order to find new inhibitors for use in human therapy, a chemical library containing highly diverse chemical structures was screened using a cell-based assay.
View Article and Find Full Text PDFHepatocyte death is a central event during liver disease progression, in which immune cells play key roles by activating members of the Tumor Necrosis Factor Receptor Superfamily (TNFRSF), including TNFR1 (TNFRSF1A), Fas (TNFRSF6) and TRAIL-R2 (TNFRSF10B). Receptor Interacting Protein Kinase 1 (RIPK1) emerged as a signaling node downstream of these receptors. In the case of TNFR1, RIPK1 has been demonstrated to paradoxically serve as a scaffold to promote the survival of hepatocytes and as a kinase to kill them.
View Article and Find Full Text PDFNecroptosis is a regulated form of cell death involved in several disease models including in particular liver diseases. Receptor-interacting protein kinases, RIPK1 and RIPK3, are the main serine/threonine kinases driving this cell death pathway. We screened a noncommercial, kinase-focused chemical library which allowed us to identify Sibiriline as a new inhibitor of necroptosis induced by tumor necrosis factor (TNF) in Fas-associated protein with death domain (FADD)-deficient Jurkat cells.
View Article and Find Full Text PDFThe innate immune system is able to detect bacterial LPS through the pattern recognition receptor CD14, which delivers LPS to various TLR signaling complexes that subsequently induce intracellular proinflammatory signaling cascades. In a previous study, we showed the overproduction of the soluble form of CD14 (sCD14) by macrophages from patients with cystic fibrosis (CF). CF is an autosomal recessive disorder that is caused by mutations in the gene that encodes the CFTR protein and is characterized by persistent inflammation.
View Article and Find Full Text PDFCell death of hepatocytes is a prominent characteristic in the pathogenesis of liver disease, while hepatolysis is a starting point of inflammation in hepatitis and loss of hepatic function. However, the precise molecular mechanisms of hepatocyte cell death, the role of the cytokines of hepatic microenvironment and the involvement of intracellular kinases, remain unclear. Tumor necrosis factor alpha (TNF-α) is a key cytokine involved in cell death or survival pathways and the role of RIPK1 has been associated to the TNF-α-dependent signaling pathway.
View Article and Find Full Text PDFTNF-Related Apoptosis-Inducing Ligand (TRAIL) is a well-known apoptosis inducer, which activates the extrinsic death pathway. TRAIL is pro-apoptotic on colon cancer cells, while not cytotoxic towards normal healthy cells. However, its clinical use is limited by cell resistance to cell death which occurs in approximately 50% of cancer cells.
View Article and Find Full Text PDFUnlabelled: Interleukin-33 (IL-33), a cytokine belonging to the IL-1 family, is crucially involved in inflammatory pathologies including liver injury and linked to various modes of cell death. However, a link between IL-33 and necroptosis or programmed necrosis in liver pathology remains elusive. We aimed to investigate the regulation of IL-33 during necroptosis-associated liver injury.
View Article and Find Full Text PDFSeveral epidemiologic studies have shown an interactive effect of heavy smoking and heavy alcohol drinking on the development of hepatocellular carcinoma. It has also been recently described that chronic hepatocyte death can trigger excessive compensatory proliferation resulting later in the formation of tumors in mouse liver. As we previously demonstrated that both benzo[a]pyrene (B[a]P), an environmental agent found in cigarette smoke, and ethanol possess similar targets, especially oxidative stress, to trigger death of liver cells, we decided to study here the cellular and molecular mechanisms of the effects of B[a]P/ethanol coexposure on cell death.
View Article and Find Full Text PDFPlasma membrane is an early target of polycyclic aromatic hydrocarbons (PAH). We previously showed that the PAH prototype, benzo[a]pyrene (B[a]P), triggers apoptosis via DNA damage-induced p53 activation (genotoxic pathway) and via remodeling of the membrane cholesterol-rich microdomains called lipid rafts, leading to changes in pH homeostasis (non-genotoxic pathway). As omega-3 (n-3) fatty acids can affect membrane composition and function or hamper in vivo PAH genotoxicity, we hypothesized that addition of physiologically relevant levels of polyunsaturated n-3 fatty acids (PUFAs) might interfere with B[a]P-induced toxicity.
View Article and Find Full Text PDFPreviously, we demonstrated that eicosapentaenoic acid enhanced ethanol-induced oxidative stress and cell death in primary rat hepatocytes via an increase in membrane fluidity and lipid raft clustering. In this context, another n-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA), was tested with a special emphasis on physical and chemical alteration of lipid rafts. Pretreatment of hepatocytes with DHA reduced significantly ethanol-induced oxidative stress and cell death.
View Article and Find Full Text PDFChemotherapy is frequently used to treat primary or metastatic cancers, but intrinsic or acquired drug resistance limits its efficiency. Sphingolipids are important regulators of various cellular processes including proliferation, apoptosis, differentiation, angiogenesis, stress, and inflammatory responses which are linked to various aspects of cancer, like tumor growth, neoangiogenesis, and response to chemotherapy. Ceramide, the central molecule of sphingolipid metabolism, generally mediates antiproliferative and proapoptotic functions, whereas sphingosine-1-phosphate and other derivatives have opposing effects.
View Article and Find Full Text PDFAlthough TRAIL (tumor necrosis factor (TNF)-related apoptosis inducing ligand) is a well-known apoptosis inducer, we have previously demonstrated that acidic extracellular pH (pHe) switches TRAIL-induced apoptosis to regulated necrosis (or necroptosis) in human HT29 colon and HepG2 liver cancer cells. Here, we investigated the role of RIPK1 (receptor interacting protein kinase 1), RIPK3 and PARP-1 (poly (ADP-ribose) polymerase-1) in TRAIL-induced necroptosis in vitro and in concanavalin A (Con A)-induced murine hepatitis. Pretreatment of HT29 or HepG2 with pharmacological inhibitors of RIPK1 or PARP-1 (Nec-1 or PJ-34, respectively), or transient transfection with siRNAs against RIPK1 or RIPK3, inhibited both TRAIL-induced necroptosis and PARP-1-dependent intracellular ATP depletion demonstrating that RIPK1 and RIPK3 were involved upstream of PARP-1 activation and ATP depletion.
View Article and Find Full Text PDFBackground: Polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (B[a]P), are ubiquitous toxic environmental pollutants capable of inducing cell death. Intracellular pH plays a key role in the regulation of cell survival and death. Our previous works have demonstrated that intracellular alkalinization mediated by Na(+)/H(+) exchanger 1 (NHE-1) is a critical event involved in B[a]P-induced apoptosis.
View Article and Find Full Text PDFBackground: Gastric cancer is one of the most common cancers in the world. The "economically developed countries" life style, including diet, constitutes a risk factor favoring this cancer. Diet modulation may lower digestive cancer incidence.
View Article and Find Full Text PDF