Background: Epithelial ovarian cancer is the most lethal gynaecological cancer worldwide. Chemotherapy resistance represents a significant clinical challenge and is the main reason for poor ovarian cancer prognosis. We identified novel expression of markers related to epithelial mesenchymal transitions (EMT) in a carboplatin resistant ovarian cancer cell line by proteomics.
View Article and Find Full Text PDFOvarian granulosa cell tumors (GCTs) are hormonally active cancers characterized by indolent growth and late, invasive relapse. No therapies have yet proven to be efficacious. We previously reported that the inhibition of the antiapoptotic X-linked inhibitor of apoptosis protein (XIAP) removes transrepression of the pro-proliferative nuclear receptor, peroxisome proliferator-activated receptor (PPAR)-γ, in a GCT-derived cell line, KGN.
View Article and Find Full Text PDFOvarian granulosa cell tumors (GCT) are characterized by indolent growth and late relapse. No therapeutic modalities aside from surgery have proven effective. We previously reported overexpression of the nuclear receptor, peroxisome proliferator-activated receptor-gamma (PPARγ), and constitutive activity of the NFκB and AP1 signaling pathways in GCT.
View Article and Find Full Text PDFCancer stem cells (CSCs) are a sub-population of tumour cells, which are responsible to drive tumour growth, metastasis and therapy resistance. It has recently been proposed that enhanced glucose metabolism and immune evasion by tumour cells are linked, and are modulated by the changing tumour microenvironment (TME) that creates a competition for nutrient consumption between tumour and different sub-types of cells attracted to the TME. To facilitate efficient nutrient distribution, oncogene-induced inflammatory milieu in the tumours facilitate adaptive metabolic changes in the surrounding non-malignant cells to secrete metabolites that are used as alternative nutrient sources by the tumours to sustain its increasing energy needs for growth and anabolic functions.
View Article and Find Full Text PDFAdult granulosa cell tumor (aGCT), the most common malignant ovarian sex cord-stromal tumor, is characterized by the forkhead transcription factor FOXL2 p.C134W somatic mutation. Late recurrences are relatively common but the molecular mechanisms of relapse or aggressive behavior are not known.
View Article and Find Full Text PDFMethods Mol Biol
July 2018
The Seahorse XFp Analyzer is a powerful tool for the assessment of various parameters of cellular respiration. Here we describe the process of the Seahorse Cell Phenotype Test using the Seahorse XFp Analyzer to characterize the metabolic phenotype of live cells. The Seahorse XFp Analyzer can also be coupled with other assays to measure cellular energetics.
View Article and Find Full Text PDFOvarian granulosa cell tumors (GCT) are hormonally-active neoplasms characterized, in the adult-subtype, by a mutation in the FOXL2 gene (C134W). They exhibit an indolent course with an unexplained propensity for late recurrence; ~80% of patients with aggressive, advanced stage tumors die from their disease; aside from surgery, therapeutic options are limited. To identify the molecular basis of advanced stage disease we have used whole transcriptome analysis of FOXL2 C134W mutation positive adult (a)GCT to identify genes that are differentially expressed between early (stage 1) and advanced (stage 3) aGCT.
View Article and Find Full Text PDFInt J Biochem Cell Biol
March 2016
Granulosa cell tumors (GCT) are unique sex-cord stromal tumors which account for ∼ 8% of all ovarian malignancies. They exhibit morphological, biochemical and hormonal features similar to proliferating granulosa cells of the preovulatory follicle, including estrogen and inhibin synthesis. A somatic missense mutation in the forkhead box L2 (FOXL2) gene (C134W) is unique to adult GCT, and absent in other ovarian cancers.
View Article and Find Full Text PDF