In Duchenne muscular dystrophy (DMD), muscle stem cells' (MuSCs) regenerative capacities are overwhelmed leading to fibrosis. Whether MuSCs have intrinsic defects or are disrupted by their environment is unclear. We investigated cell behavior and gene expression of MuSCs from DMD or healthy human muscles.
View Article and Find Full Text PDFSMCHD1 is an epigenetic regulatory protein known to modulate the targeted repression of large chromatin domains. Diminished SMCHD1 function in muscle fibers causes Facioscapulohumeral Muscular Dystrophy (FSHD2) through derepression of the D4Z4 chromatin domain, an event which permits the aberrant expression of the disease-causing gene DUX4. Given that SMCHD1 plays a broader role in establishing the cellular epigenome, we examined whether loss of SMCHD1 function might affect muscle homeostasis through additional mechanisms.
View Article and Find Full Text PDFSkeletal muscle has an extraordinary capacity to regenerate itself after injury due to the presence of tissue-resident muscle stem cells. While these muscle stem cells are the primary contributor to the regenerated myofibers, the process occurs in a regenerative microenvironment where multiple different cell types act in a coordinated manner to clear the damaged myofibers and restore tissue homeostasis. In this regenerative environment, immune cells play a well-characterized role in initiating repair by establishing an inflammatory state that permits the removal of dead cells and necrotic muscle tissue at the injury site.
View Article and Find Full Text PDFHutchinson-Gilford Progeria syndrome (HGPS) is a lethal premature aging disorder caused by a de novo heterozygous mutation that leads to the accumulation of a splicing isoform of Lamin A termed progerin. Progerin expression deregulates the organization of the nuclear lamina and the epigenetic landscape. Progerin has also been observed to accumulate at low levels during normal aging in cardiovascular cells of adults that do not carry genetic mutations linked with HGPS.
View Article and Find Full Text PDFMuscle stem cells (MuSCs) reside in a specialized niche that ensures their regenerative capacity. Although we know that innate immune cells infiltrate the niche in response to injury, it remains unclear how MuSCs adapt to this altered environment for initiating repair. Here, we demonstrate that inflammatory cytokine signaling from the regenerative niche impairs the ability of quiescent MuSCs to reenter the cell cycle.
View Article and Find Full Text PDFFront Bioeng Biotechnol
May 2022
Cartilage injury and degeneration are hallmarks of osteoarthritis (OA), the most common joint disease. OA is a major contributor to pain, loss of function, and reduced quality of life. Over the last decade, considerable research efforts have focused on cell-based therapies, including several stem cell-derived approaches to reverse the cartilage alterations associated with OA.
View Article and Find Full Text PDFThe induction of lineage-specific gene programs are strongly influenced by alterations in local chromatin architecture. However, key players that impact this genome reorganization remain largely unknown. Here, we report that the removal of the special AT-rich binding protein 2 (SATB2), a nuclear protein known to bind matrix attachment regions, is a key event in initiating myogenic differentiation.
View Article and Find Full Text PDFMuscle stem cells (MuSCs) are a rare stem cell population that provides myofibers with a remarkable capacity to regenerate after tissue injury. Here, we have adapted the Cleavage Under Target and Tagmentation technology to the mapping of the chromatin landscape and transcription factor binding in 50,000 activated MuSCs isolated from injured mouse hindlimb muscles. We have applied this same approach to human CD34 hematopoietic stem and progenitor cells.
View Article and Find Full Text PDFSkeletal muscle regeneration is mediated by myoblasts that undergo epigenomic changes to establish the gene expression program of differentiated myofibers. mSWI/SNF chromatin remodeling enzymes coordinate with lineage-determining transcription factors to establish the epigenome of differentiated myofibers. Bromodomains bind to acetylated lysines on histone N-terminal tails and other proteins.
View Article and Find Full Text PDFThe epigenetic mechanisms coordinating the maintenance of adult cellular lineages and the inhibition of alternative cell fates remain poorly understood. Here we show that targeted ablation of the histone chaperone HIRA in myogenic cells leads to extensive transcriptional modifications, consistent with a role in maintaining skeletal muscle cellular identity. We demonstrate that conditional ablation of HIRA in muscle stem cells of adult mice compromises their capacity to regenerate and self-renew, leading to tissue repair failure.
View Article and Find Full Text PDFNegative elongation factor (NELF) is a critical transcriptional regulator that stabilizes paused RNA polymerase to permit rapid gene expression changes in response to environmental cues. Although NELF is essential for embryonic development, its role in adult stem cells remains unclear. In this study, through a muscle-stem-cell-specific deletion, we showed that NELF is required for efficient muscle regeneration and stem cell pool replenishment.
View Article and Find Full Text PDFIn response to muscle injury, muscle stem cells integrate environmental cues in the damaged tissue to mediate regeneration. These environmental cues are tightly regulated to ensure expansion of muscle stem cell population to repair the damaged myofibers while allowing repopulation of the stem cell niche. These changes in muscle stem cell fate result from changes in gene expression that occur in response to cell signaling from the muscle environment.
View Article and Find Full Text PDFIn Duchenne muscular dystrophy (DMD) patients, absence of dystrophin causes muscle wasting by impacting both the myofiber integrity and the properties of muscle stem cells (MuSCs). Investigation of DMD encompasses the use of MuSCs issued from human skeletal muscle. However, DMD-derived MuSC usage is restricted by the limited number of divisions that human MuSCs can undertake in vitro before losing their myogenic characteristics and by the scarcity of human material available from DMD muscle.
View Article and Find Full Text PDFMolecular signatures defining quiescence in muscle satellite cells (mSCs) remain enigmatic. In this issue of Developmental Cell, Yue et al. adapted an in vivo fixation approach to isolate dormant mSCs from healthy muscle.
View Article and Find Full Text PDFMonoacylglycerol lipase (Mgll), a hydrolase that breaks down the endocannabinoid 2-arachidonoyl glycerol (2-AG) to produce arachidonic acid (ARA), is a potential target for neurodegenerative diseases, such as Alzheimer's disease (AD). Increasing evidence shows that impairment of adult neurogenesis by perturbed lipid metabolism predisposes patients to AD. However, it remains unknown what causes aberrant expression of Mgll in AD and how Mgll-regulated lipid metabolism impacts adult neurogenesis, thus predisposing to AD during aging.
View Article and Find Full Text PDFOvarian cancer (OVCA) is the most lethal gynecological cancer, due predominantly to late presentation, high recurrence rate and common chemoresistance development. The expression of the actin-associated protein cytosolic gelsolin (GSN) regulates the gynecological cancer cell fate resulting in dysregulation in chemosensitivity. In this study, we report that elevated expression of plasma gelsolin (pGSN), a secreted isoform of GSN and expressed from the same GSN gene, correlates with poorer overall survival and relapse-free survival in patients with OVCA.
View Article and Find Full Text PDFJ Shoulder Elbow Surg
September 2019
Background: The rotator cuff (RC) repair failure rate is high. Tendon and bone represent sources of mesenchymal stem cells (MSCs), but the number of MSCs from each has not been compared. Bone channeling may increase bone-derived MSC numbers participating in enthesis re-formation at the "footprint" repair site.
View Article and Find Full Text PDFStem cells are continuously challenged with the decision to either self-renew or adopt a new fate. Self-renewal is regulated by a system of cellular memory, which must be bypassed for differentiation. Previous studies have identified Polycomb group (PcG) and Trithorax group (TrxG) proteins as key modulators of cellular memory.
View Article and Find Full Text PDFDeep sequencing has revealed that epigenetic modifiers are the most mutated genes in acute myeloid leukemia (AML). Thus, elucidating epigenetic dysregulation in AML is crucial to understand disease mechanisms. Here, we demonstrate that metal response element binding transcription factor 2/polycomblike 2 (MTF2/PCL2) plays a fundamental role in the polycomb repressive complex 2 (PRC2) and that its loss elicits an altered epigenetic state underlying refractory AML.
View Article and Find Full Text PDFBackground: Skeletal muscles express a highly specialized proteome that allows the metabolism of energy sources to mediate myofiber contraction. This muscle-specific proteome is partially derived through the muscle-specific transcription of a subset of genes. Surprisingly, RNA sequencing technologies have also revealed a significant role for muscle-specific alternative splicing in generating protein isoforms that give specialized function to the muscle proteome.
View Article and Find Full Text PDFSkeletal muscle regeneration is an efficient stem cell-based repair system that ensures healthy musculature. For this repair system to function continuously throughout life, muscle stem cells must contribute to the process of myofiber repair as well as repopulation of the stem cell niche. The decision made by the muscle stem cells to commit to the muscle repair or to remain a stem cell depends upon patterns of gene expression, a process regulated at the epigenetic level.
View Article and Find Full Text PDFIdeally, disease modeling using patient-derived induced pluripotent stem cells (iPSCs) enables analysis of disease initiation and progression. This requires any pathological features of the patient cells used for reprogramming to be eliminated during iPSC generation. Hutchinson-Gilford progeria syndrome (HGPS) is a segmental premature aging disorder caused by the accumulation of the truncated form of Lamin A known as Progerin within the nuclear lamina.
View Article and Find Full Text PDF