Publications by authors named "Dillon J Chung"

Life history and metabolism covary, but the mechanisms and individual traits responsible for these linkages remain unresolved. Dispersal capability is a critical component of life history that is constrained by metabolic capacities for energy production. Conflicting relationships between metabolism and life histories may be explained by accounting for variation in dispersal and maximal metabolic rates.

View Article and Find Full Text PDF

Mitochondrial adaptations are fundamental to differentiated function and energetic homeostasis in mammalian cells. But the mechanisms that underlie these relationships remain poorly understood. Here, we investigated organ-specific mitochondrial morphology, connectivity and protein composition in a model of extreme mammalian metabolism, the least shrew (Cryptotis parva).

View Article and Find Full Text PDF

Temperature is a critical abiotic factor shaping the distribution and abundance of species, but the mechanisms that underpin organismal thermal limits remain poorly understood. One possible mechanism underlying these limits is the failure of mitochondrial processes, as mitochondria play a crucial role in animals as the primary site of ATP production. Conventional measures of mitochondrial performance suggest that these organelles can function at temperatures much higher than those that limit whole-organism function, suggesting that they are unlikely to set organismal thermal limits.

View Article and Find Full Text PDF

Although mitochondrial DNA (mtDNA) is prone to accumulate mutations and lacks conventional DNA repair mechanisms, deleterious mutations are exceedingly rare. How the transmission of detrimental mtDNA mutations is restricted through the maternal lineage is debated. Here, we demonstrate that mitochondrial fission, together with the lack of mtDNA replication, segregate mtDNA into individual organelles in the Drosophila early germarium.

View Article and Find Full Text PDF

The mitonuclear species concept hypothesizes that incompatibilities between interacting gene products of the nuclear and mitochondrial genomes are a major factor establishing and maintaining species boundaries. However, most of the data available to test this concept come from studies of genetic variation in mitochondrial DNA, and clines in the mitochondrial genome across contact zones can be produced by a variety of forces. Here, we show that using a combination of population genomic analyses of the nuclear and mitochondrial genomes and studies of mitochondrial function can provide insight into the relative roles of neutral processes, adaptive evolution, and mitonuclear incompatibility in establishing and maintaining mitochondrial clines, using Atlantic killifish (Fundulus heteroclitus) as a case study.

View Article and Find Full Text PDF

Thermal effects on mitochondrial efficiency and ATP production can influence whole-animal thermal tolerance and performance. Thus, organisms may have the capacity to alter mitochondrial processes through acclimation or adaptation to mitigate these effects. One possible mechanism is through the action of uncoupling proteins (UCPs), which can decrease the proton-motive force independent of the production of ATP.

View Article and Find Full Text PDF

Life history strategies, physiological traits, and behavior are thought to covary along a "pace of life" axis, with organisms at the fast end of this continuum having higher fecundity, shorter lifespan, and more rapid development, growth, and metabolic rates. Countergradient variation represents a special case of pace of life variation, in which high-latitude organisms occupy the fast end of the continuum relative to low-latitude conspecifics when compared at a common temperature. Here, we use Atlantic killifish (Fundulus heteroclitus) to explore the role of mitochondrial properties as a mechanism underlying countergradient variation, and thus variation in the pace of life.

View Article and Find Full Text PDF

The effect of temperature on mitochondrial performance is thought to be partly due to its effect on mitochondrial membranes. Numerous studies have shown that thermal acclimation and adaptation can alter the amount of inner-mitochondrial membrane (IMM), but little is known about the capacity of organisms to modulate mitochondrial membrane composition. Using northern and southern subspecies of Atlantic killifish () that are locally adapted to different environmental temperatures, we assessed whether thermal acclimation altered liver mitochondrial respiratory capacity or the composition and amount of IMM.

View Article and Find Full Text PDF

Mitochondrial function has been suggested to underlie constraints on whole-organism aerobic performance and associated hypoxia and thermal tolerance limits, but most studies have focused on measures of maximum mitochondrial capacity. Here we investigated whether variation in mitochondrial oxygen kinetics could contribute to local adaptation and plasticity in response to temperature using two subspecies of the Atlantic killifish (Fundulus heteroclitus) acclimated to a range of temperatures (5, 15, and 33 °C). The southern subspecies of F.

View Article and Find Full Text PDF

Mitochondrial performance may play a role in setting whole-animal thermal tolerance limits and their plasticity, but the relative roles of adjustments in mitochondrial performance across different highly aerobic tissues remain poorly understood. We compared heart and brain mitochondrial responses to acute thermal challenges and to thermal acclimation using high-resolution respirometry in two locally adapted subspecies of Atlantic killifish (). We predicted that 5°C acclimation would result in compensatory increases in mitochondrial performance, while 33°C acclimation would cause suppression of mitochondrial function to minimize the effects of high temperature on mitochondrial metabolism.

View Article and Find Full Text PDF

Ectotherms often respond to prolonged cold exposure by increasing mitochondrial capacity via elevated mitochondrial volume density [V (mit,f)]. In fish, higher V (mit,f) is typically associated with increased expression of nuclear respiratory factor 1 (Nrf1), a transcription factor that induces expression of nuclear-encoded respiratory genes. To examine if nrf1 expression or the expression of other genes that regulate mitochondrial biogenesis contribute to changes in whole-organism metabolic rate during cold acclimation, we examined the time course of changes in the expression of these genes and in metabolic rate in Atlantic killifish, Fundulus heteroclitus.

View Article and Find Full Text PDF

Processes acting at the level of the mitochondria have been suggested to affect the thermal limits of organisms. To determine whether changes in mitochondrial properties could underlie shifts in thermal limits, we examined how mitochondrial properties are affected by thermal acclimation in the eurythermal killifish, Fundulus heteroclitus - a species with substantial plasticity in whole-organism thermal limits. We hypothesized that thermal acclimation would result in functional changes in the mitochondria that could result in trade-offs in function during acute thermal shifts.

View Article and Find Full Text PDF

Mammalian hibernation involves periods of substantial suppression of metabolic rate (torpor) allowing energy conservation during winter. In thirteen-lined ground squirrels (Ictidomys tridecemlineatus), suppression of liver mitochondrial respiration during entrance into torpor occurs rapidly (within 2 h) before core body temperature falls below 30°C, whereas reversal of this suppression occurs slowly during arousal from torpor. We hypothesized that this pattern of rapid suppression in entrance and slow reversal during arousal was related to changes in the phosphorylation state of mitochondrial enzymes during torpor catalyzed by temperature-dependent kinases and phosphatases.

View Article and Find Full Text PDF

Hibernating ground squirrels (Ictidomys tridecemlineatus) alternate between two distinct metabolic states throughout winter: torpor, during which metabolic rate (MR) and body temperature (Tb) are considerably suppressed, and interbout euthermia (IBE), during which MR and Tb briefly return to euthermic levels. Previous studies showed suppression of succinate-fuelled respiration during torpor in liver and skeletal muscle mitochondria; however, these studies used only a single, saturating succinate concentration. Therefore, they could not address whether mitochondrial metabolic suppression occurs under physiological substrate concentrations or whether differences in the kinetics of mitochondrial responses to changing substrate concentration might also contribute to mitochondrial metabolic regulation during torpor.

View Article and Find Full Text PDF

During hibernation, animals cycle between periods of torpor, during which body temperature (T(b)) and metabolic rate (MR) are suppressed for days, and interbout euthermia (IBE), during which T(b) and MR return to resting levels for several hours. In this study, we measured respiration rates, membrane potentials, and reactive oxygen species (ROS) production of liver and skeletal muscle mitochondria isolated from ground squirrels (Ictidomys tridecemlineatus) during torpor and IBE to determine how mitochondrial metabolism is suppressed during torpor and how this suppression affects oxidative stress. In liver and skeletal muscle, state 3 respiration measured at 37°C with succinate was 70% and 30% lower, respectively, during torpor.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionfqhabl9s7o3gqq1543bardrs6uhpbf84): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once