Proc Natl Acad Sci U S A
November 2023
The complex, systemic pathology of sickle cell disease is driven by multiple mechanisms including red blood cells (RBCs) stiffened by polymerized fibers of deoxygenated sickle hemoglobin. A critical step toward understanding the pathologic role of polymer-containing RBCs is quantifying the biophysical changes in these cells in physiologically relevant oxygen environments. We have developed a microfluidic platform capable of simultaneously measuring single RBC deformability and oxygen saturation under controlled oxygen and shear stress.
View Article and Find Full Text PDFThe molecular origin of sickle cell disease (SCD) has been known since 1949, but treatments remain limited. We present the first high-throughput screening (HTS) platform for discovering small molecules that directly inhibit sickle hemoglobin (HbS) oligomerization and improve blood flow, potentially overcoming a long-standing bottleneck in SCD drug discovery. We show that at concentrations far below the threshold for nucleation and rapid polymerization, deoxygenated HbS forms small assemblies of multiple αβ tetramers.
View Article and Find Full Text PDF