Publications by authors named "Dillon C Schrock"

Much remains to be learned about the molecular mechanisms underlying a class of human disorders called actinopathies. These genetic disorders are characterized by loss-of-function mutations in actin-associated proteins that affect immune cells, leading to human immunopathology. However, much remains to be learned about how cytoskeletal dysregulation promotes immunological dysfunction.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is extensively remodeled during inflammation providing essential guidance cues for immune cell migration and signals for cell activation and survival. There is increasing interest in the therapeutic targeting of ECM to mitigate chronic inflammatory diseases and enhance access to the tumor microenvironment. T cells utilize the ECM as a scaffold for interstitial migration, dependent on T cell expression of matrix-binding integrins αβ/αβ and tissue display of the respective RGD-containing ligands.

View Article and Find Full Text PDF

T-helper (Th) cell differentiation drives specialized gene programs that dictate effector T cell function at sites of infection. Here, we have shown Th cell differentiation also imposes discrete motility gene programs that shape Th1 and Th2 cell navigation of the inflamed dermis. Th1 cells scanned a smaller tissue area in a G protein-coupled receptor (GPCR) and chemokine-dependent fashion, while Th2 cells scanned a larger tissue area independent of GPCR signals.

View Article and Find Full Text PDF

CD4+ follicular helper T cells (Tfh) are essential for germinal center (GC) reactions in the lymph node that generate high-affinity, long-lived plasma cells (LLPCs). Temporal GC analysis suggests B memory cells (Bmem) are generated early, while LLPCs are generated late in the GC reaction. Distinct roles for Tfh at these temporally different stages are not yet clear.

View Article and Find Full Text PDF

Effector T cells exit the inflamed vasculature into an environment shaped by tissue-specific structural configurations and inflammation-imposed extrinsic modifications. Once within interstitial spaces of non-lymphoid tissues, T cells migrate in an apparent random, non-directional, fashion. Efficient T cell scanning of the tissue environment is essential for successful location of infected target cells or encounter with antigen-presenting cells that activate the T cell's antimicrobial effector functions.

View Article and Find Full Text PDF