Publications by authors named "Dillon A Noltensmeyer"

Recently, it has been well-established that the glymphatic or glial-lymphatic system plays a vital role in the pathophysiology of various neurological compromise, especially hydrocephalus (HCP). Till now, the complete pathway is not yet fully understood, and little evidence is available from the literature that links hydrocephalus to disorders of the glymphatic system. Most published molecular studies and animal research have shown that, in models with hydrocephalus, the drainage of cerebrospinal fluid (CSF) via the glymphatic system is disrupted.

View Article and Find Full Text PDF

Cell cycle dysregulation is prerequisite for cancer formation. However, it is unknown whether the mode of dysregulation affects disease characteristics. Here, we conduct comprehensive analyses of cell cycle checkpoint dysregulation using patient data and experimental investigations.

View Article and Find Full Text PDF

Metastatic cancers are chemoresistant, involving complex interplay between disseminated cancer cell aggregates and the distant organ microenvironment (extracellular matrix and stromal cells). Conventional metastasis surrogates (scratch/wound healing, Transwell migration assays) lack 3D architecture and ECM presence. Metastasis studies can therefore significantly benefit from biomimetic 3D models recapitulating the complex cascade of distant organ invasion and colonization by collective clusters of cells.

View Article and Find Full Text PDF

Brain aneurysms can be treated with embolic coils using minimally invasive approaches. It is advantageous to modulate the biologic response of platinum embolic coils. Our previous studies demonstrated that shape memory polymer (SMP) foam coated embolization coils (FCC) devices demonstrate enhanced healing responses in animal models compared with standard bare platinum coil (BPC) devices.

View Article and Find Full Text PDF