ACS Appl Mater Interfaces
January 2025
The MgSb-based layered compounds exhibit exceptional thermoelectric properties over a wide temperature range and possess the potential to supplant traditional BiTe modules with reliable and economical MgSb-based thermoelectric devices, contingent upon the availability of a complementary p-type MgSb material with high thermoelectric efficiency comparable to that of n-type MgSb. We provide a simpler method involving the codoping of monovalent atoms (K and Na) at the Mg site of the MgSb lattice to improve the thermoelectric performance of p-type MgSb. K-Na codoping results in a peak power factor of around 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Flexible thermoelectric devices offer huge potential for wearable electronics due to their ability to generate green energy by using low-grade heat. However, achieving both high thermoelectric performance and flexibility simultaneously remains a challenge for these devices. Here, we present a simple and cost-effective method for fabricating a high-performance flexible inorganic-organic thermoelectric film by depositing AgSe on a porous nylon membrane.
View Article and Find Full Text PDFStimuli-responsive polymers have gained significant research interest in recent years owing to their potential applications in diverse areas. Here, we present a study on the actuation characteristics of chitosan-based free-standing films that exhibit full reversibility and repeatability in response to water vapor exposure. The effect of pH of the water and the degree of cross-linking of the chitosan films on the actuation performance is studied.
View Article and Find Full Text PDFUniform distribution of particles and crack suppression in dried particulate deposits are major challenges for applications in coating and printing technologies. To address this, we investigated the impact of the addition of a water-soluble polymer, poly(vinyl alcohol) (PVA), on the evaporative self-assembly and kinetics of crack formation in deposits of anisotropic colloids. The fluid flow inside the drying drop is significantly altered due to polymer-mediated adsorption of ellipsoids to the drop surface.
View Article and Find Full Text PDFColloidal monolayers serve as fundamental building blocks in fabricating diverse functional materials, pivotal for surface modifications, chemical reactivity, and controlled assembly of nanoparticles. In this article, we report the formation of colloidal monolayers generated by drying an aqueous droplet containing soft colloids confined between two hydrophilic parallel plates. The analysis of the kinetics of evaporation in this confined mode showed that: (i) for a significant portion of the drying time, the drops adopt a catenoid configuration; (ii) in the penultimate stage of drying, the catenoid structure undergoes division into two daughter droplets; (iii) the three-phase contact line remains pinned at a specific location while it continuously slips at all other locations.
View Article and Find Full Text PDFWe report the magnificent thermoelectric properties of the n-type AgSe film printed onto a flexible polyimide (PI) substrate. The orthorhombic β-AgSe phase of the processed AgSe film is confirmed from the X-ray diffractogram. Remarkably, the resulting AgSe/PI film exhibits outstanding thermoelectric properties, boasting maximum power factors of 1.
View Article and Find Full Text PDFBioinspired soft actuators, capable of undergoing shape deformation in response to external triggers, hold great potential in fields such as soft robotics, artificial muscles, drug delivery, and smart switches. However, their widespread application is hindered by limitations in responsiveness, durability, and complex fabrication processes. In this study, we propose a new approach to tackle these challenges by developing a single-layer soft actuator that responds to multiple stimuli using a straightforward solution-casting method.
View Article and Find Full Text PDFEllipsometry is a powerful and convenient technique that is widely used to determine the thickness and optical characteristics of polymer thin films. The determination is accomplished by modeling the measured change in the polarization of an electromagnetic wave upon interacting with the thin film. However, due to the strong statistical correlations between the fit parameters in the model, simultaneous determination of the thickness and the refractive indices of optically anisotropic ultrathin films using ellipsometry remains a challenge.
View Article and Find Full Text PDFThe drying kinetics of a sessile drop on a solid surface are a widely studied phenomenon because of their relevance to various fields such as coating, printing, medical diagnostics, sensing, and microfluidic technology. Typically, the drop undergoes drying either at a constant contact radius () with a decrease in the three-phase contact angle or at a constant contact angle (θ) with a reduction in the radius with time. These two drying modes are referred to as CCR and CCA, respectively.
View Article and Find Full Text PDFBioinspired smart polymeric materials that undergo three-dimensional shape deformation in response to specific stimuli have gained significant attention in the field of soft robotics and intelligent devices. Despite the substantial advancements in soft robotics, there is a growing demand for the design of multistimuli-responsive soft actuators using a single layer of material due to its reduced complexity and ease of manufacturing and durability. Here, we report the actuation characteristics of a single-layer, dual-responsive soft actuator that overcomes the commonly encountered delamination issues often associated with bilayer systems by incorporating PEDOT:PSS with cassava starch.
View Article and Find Full Text PDFCopper iodide, an environmentally friendly material abundant in nature, holds great significance for room temperature thermoelectric (TE) applications owing to its high Seebeck coefficient and optical transparency. However, to fully unlock its thermoelectric potential and match the performance of conventional TE materials, there is a need to further enhance its electrical conductivity. In this study, we have successfully synthesized nano-crystalline powders of both undoped and aluminium-doped CuI at room temperature using the chemical precipitation method in an ethanol medium.
View Article and Find Full Text PDFWe report an experimental and theoretical study of the morphology of desiccation cracks formed in deposits of hematite ellipsoids dried in an externally applied alternating current (ac) electric field. A series of transitions in the crack morphology is observed by modulating the frequency and the strength of the applied field. We also found a clear transition in the morphology of cracks as a function of the aspect ratio of the ellipsoid.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
Multivapor-responsive biocompatible soft actuators have immense potential for applications in soft robotics and medical technology. We report fast, fully reversible, and multivapor-responsive controlled actuation of a pure cassava-starch-based film. Notably, this starch-based actuator sustains its actuated state for over 60 min with a continuous supply of water vapor.
View Article and Find Full Text PDFWe report the effect of polarity and surface charge density on the nucleation and growth kinetics of desiccation cracks in deposits of colloids formed by drying. We show that the average spacing between desiccation cracks and crack opening are higher for the deposit of positively charged colloids than that of negatively charged colloids. The temporal evolution of crack growth is found to be faster for positively charged particle deposits.
View Article and Find Full Text PDFA strongly adsorbed, tightly bound polymer layer can exist at the polymer/substrate interface in polymer thin films and polymer nanocomposites. The characteristics of the tightly bound layer have long been of interest because of its effect on physical properties. However, direct investigations are challenging as the layer is buried deep within the sample.
View Article and Find Full Text PDFDue to natural abundance, low cost, and compatibility with sustainable green technology, MgSb-based Zintl compounds are comprehensively explored as potential thermoelectric materials for near-room temperature applications. The effective use of these materials in thermoelectric devices requires both p and n-type MgSb having comparable thermoelectric efficiency. However, p-type MgSb has inferior thermoelectric efficiency efficiency compared to its n-type counterpart due to low electrical conductivity .
View Article and Find Full Text PDFJ Colloid Interface Sci
July 2023
Hypothesis: Microgels are a class of model soft colloids that act like surfactants due to their amphiphilicity and are spontaneously adsorbed to the fluid-air interface. Here, we exploit the surfactant-like characteristics of microgels to generate Marangoni stress-induced fluid flow at the surface of a drop containing soft colloids. This Marangoni flow combined with the well-known capillary flow that arises during the evaporation of a drop placed on a solid surface, leads to the formation of a novel two-dimensional deposit of particles with distinct depletion zones at its edge.
View Article and Find Full Text PDFEvaporation of fluid from a pinned drop placed on solid surface proceeds constant contact radius (CCR) mode, with a continuous reduction in the contact angle. The reduction of contact angle leads to an imbalance of interfacial tensions at the three-phase contact line. When the unbalanced force is sufficiently strong, the drop slips from the pinned contact line and slides inward.
View Article and Find Full Text PDFThe advantage of secondary-phase induced carrier filtering on the thermoelectric properties has paved the way for developing cost-effective, highly efficient thermoelectric materials. Here, we report a very high thermoelectric figure-of-merit of skutterudite nanocomposites achieved by tailoring interface carrier filtering. The single-filled skutterudite nanocomposites are prepared by dispersing rare-earth oxides nanoparticles (YbO, SmO, LaO) in the skutterudite (DyCoNiSb) matrix.
View Article and Find Full Text PDFWe report an interplay between the desorption of intrinsic water and relaxation of polymer chains resulting in an unusual thermomechanical response of a hydrogel, wherein the elastic modulus increases in a certain temperature range followed by a sharp decrease with a further increase in temperature. We establish that, in a hydrogel, the desorption of disparate water types having distinct binding energy affects the consolidation and relaxation behaviour of the matrix, which in turn affects the mechanical properties at different temperature ranges. Using temperature-dependent dielectric relaxation spectroscopy and nanoindentation techniques, the chain dynamics and mechanical properties are investigated.
View Article and Find Full Text PDFDue to the natural abundance and non-toxicity of copper (Cu) and iodine (I), γ-CuI has been widely explored as a potential transparent thermoelectric material for near room temperature applications. Here, we report the effect of doping of an heavy atom such as silver (Ag) on the evolution of temperature-dependent optical phonon modes and thermoelectric properties of chemically synthesized single-phase nanocrystalline γ-CuI. We found that Ag doping reduces the lattice parameters of CuI and thereby confirms the occupancy of Ag atoms at the vacancy sites of CuI.
View Article and Find Full Text PDFThe control of the morphology of desiccation cracks is fascinating not only from the application point of view but also from the rich physics behind it. Here, we present a seemingly simple method to tailor the morphology of desiccation cracks by exploitation of the combined effect of particle shape anisotropy and the shape of the confining boundary. This allows us to make circular, square, and triangular-shaped desiccation cracks in the vicinity of the confining boundaries.
View Article and Find Full Text PDFThree-dimensional (3D) shape morphism observed in nature inspires the development of stimuli-responsive soft actuators. Vapor-responsive actuators are promising among the different stimuli-responsive materials due to their capability to produce macroscale movements in response to a minuscule amount of specific chemical vapor. Here, we report unusual multiple vapor-responsive bidirectional macroscale actuation behaviors of single-layer regenerated silk fibroin films.
View Article and Find Full Text PDFMechanical properties of particle laden interfaces is crucial for various applications. For water droplets containing soft microgel particles, passive microrheology studies have revealed that the dynamically varying surface area of the evaporating drop results in a viscous to viscoelastic transition along the plane of the interface. However, the behaviour of the medium orthogonal to the interface has been elusive to study using passive microrheology techniques.
View Article and Find Full Text PDFThe packing of particles is ubiquitous, and it is of fundamental importance, particularly in materials science in the nanometric length scale. It becomes more intriguing when constituent particles deviate from spherical symmetry owing to the inherent complexity in quantifying their positional and rotational correlation. For quantitative estimation of packing fraction, it requires a thorough analysis of the positional correlation of jammed particles.
View Article and Find Full Text PDF