The super enhancement of silicon band edge luminescence when co-implanted with boron and carbon is reported. The role of boron in the band edge emissions in silicon was investigated by deliberately introducing defects into the lattice structures. We aimed to increase the light emission intensity from silicon by boron implantation, leading to the formation of dislocation loops between the lattice structures.
View Article and Find Full Text PDFThe crystal structure, electron charge density, band structure, density of states, and optical properties of pure and strontium (Sr)-doped β-GaO were studied using the first-principles calculation based on the density functional theory (DFT) within the generalized-gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE). The reason for choosing strontium as a dopant is due to its p-type doping behavior, which is expected to boost the material's electrical and optical properties and maximize the devices' efficiency. The structural parameter for pure β-GaO crystal structure is in the monoclinic space group (C2/m), which shows good agreement with the previous studies from experimental work.
View Article and Find Full Text PDFWe designed and demonstrated a double-peak one-dimensional photonic crystal (1D PhC) cavity device by integrating two 1D PhCs cavities in a parallel configuration. The device design is proposed so that it can be used for bio-sensing purposes and has a self-compensation ability to reduce the measurement error caused by the change of the surrounding temperature. By combining two light resonances, two resonance peaks are obtained.
View Article and Find Full Text PDFThis work investigates the surface plasmon resonance (SPR) response of 50-nm thick nano-laminated gold film using Kretschmann-based biosensing for detection of urea and creatinine in solution of various concentrations (non-enzymatic samples). Comparison was made with the presence of urease and creatininase enzymes in the urea and creatinine solutions (enzymatic samples), respectively. Angular interrogation technique was applied using optical wavelengths of 670 nm and 785 nm.
View Article and Find Full Text PDF