Publications by authors named "Dill K"

We develop a computer model for how two different chemical catalysts in solution, A and B, could be driven to form AB complexes, based on the concentration gradients of a substrate or product that they share in common. If A's product is B's substrate, B will be attracted to A, mediated by a common resource that is not otherwise plentiful in the environment. By this simple physicochemical mechanism, chemical reactions could spontaneously associate to become chained together in solution.

View Article and Find Full Text PDF

To investigate the evolutionary history of mesoderm in the bilaterian lineage, we are studying mesoderm development in the polychaete annelid, Capitella sp. I, a representative lophotrochozoan. In this study, we focus on the Twist and Snail families as candidate mesodermal patterning genes and report the isolation and in situ expression patterns of two twist homologs (CapI-twt1 and CapI-twt2) and two snail homologs (CapI-sna1 and CapI-sna2) in Capitella sp.

View Article and Find Full Text PDF

To meet the challenge of modeling the conformational dynamics of biological macromolecules over long time scales, much recent effort has been devoted to constructing stochastic kinetic models, often in the form of discrete-state Markov models, from short molecular dynamics simulations. To construct useful models that faithfully represent dynamics at the time scales of interest, it is necessary to decompose configuration space into a set of kinetically metastable states. Previous attempts to define these states have relied upon either prior knowledge of the slow degrees of freedom or on the application of conformational clustering techniques which assume that conformationally distinct clusters are also kinetically distinct.

View Article and Find Full Text PDF

Despite much study, biomolecule folding cooperativity is not well understood. There are quantitative models for helix-coil transitions and for coil-to-globule transitions, but no accurate models yet treat both chain collapse and secondary structure formation together. We develop here a dynamic programming approach to statistical mechanical partition functions of foldamer chain molecules.

View Article and Find Full Text PDF

For the classical diffusion of independent particles, Fick's law gives a well-known relationship between the average flux and the average concentration gradient. What has not yet been explored experimentally, however, is the dynamical distribution of diffusion rates in the limit of small particle numbers. Here, we measure the distribution of diffusional fluxes using a microfluidics device filled with a colloidal suspension of a small number of microspheres.

View Article and Find Full Text PDF

In molecular simulations with fixed-charge force fields, the choice of partial atomic charges influences numerous computed physical properties, including binding free energies. Many molecular mechanics force fields specify how nonbonded parameters should be determined, but various choices are often available for how these charges are to be determined for arbitrary small molecules. Here, we compute hydration free energies for a set of 44 small, neutral molecules in two different explicit water models (TIP3P and TIP4P-Ew) to examine the influence of charge model on agreement with experiment.

View Article and Find Full Text PDF

Objective: The purpose of this study was to evaluate the effect of cardiac gating on the quality of images of the thoracic aorta at various levels during contrast-enhanced MR angiography compared with MR angiography without cardiac gating.

Materials And Methods: Fifty patients underwent high-resolution contrast-enhanced MR angiography on a 1.5-T whole-body system.

View Article and Find Full Text PDF

The growing adoption of generalized-ensemble algorithms for biomolecular simulation has resulted in a resurgence in the use of the weighted histogram analysis method (WHAM) to make use of all data generated by these simulations. Unfortunately, the original presentation of WHAM by Kumar et al. is not directly applicable to data generated by these methods.

View Article and Find Full Text PDF

An addressable electrode array was used for the production of acid at sufficient concentration to allow deprotection of the dimethoxytrityl (DMT) protecting group from an overlaying substrate bound to a porous reaction layer. Containment of the generated acid to an active electrode of 100 micron diameter was achieved by the presence of an organic base. This procedure was then used for the production of a DNA array, in which synthesis was directed by the electrochemical removal of the DMT group during synthesis.

View Article and Find Full Text PDF

It has been proposed that proteins fold by a process called "Zipping and Assembly" (Z&A). Zipping refers to the growth of local substructures within the chain, and assembly refers to the coming together of already-formed pieces. Our interest here is in whether Z&A is a general method that can fold most of sequence space, to global minima, efficiently.

View Article and Find Full Text PDF

Phi values are experimental measures of the effects of mutations on the folding kinetics of a protein. A central question is what structural information Phi values give about the transition-state of folding. Traditionally, a Phi value is interpreted as representing the "nativeness" of a mutated residue in the transition-state.

View Article and Find Full Text PDF

An important puzzle in structural biology is the question of how proteins are able to fold so quickly into their unique native structures. There is much evidence that protein folding is hierarchic. In that case, folding routes are not linear, but have a tree structure.

View Article and Find Full Text PDF

Alchemical free energy calculations are becoming a useful tool for calculating absolute binding free energies of small molecule ligands to proteins. Here, we find that the presence of multiple metastable ligand orientations can cause convergence problems when distance restraints alone are used. We demonstrate that the use of orientational restraints can greatly accelerate the convergence of these calculations.

View Article and Find Full Text PDF

Electrochemical detection has been developed and assay performances studied for the CombiMatrix oligonucleotide microarray platform that contains 12,544 individually addressable microelectrodes (features) in a semiconductor matrix. The approach is based on the detection of redox active chemistries (such as horseradish peroxidase (HRP) and the associated substrate TMB) proximal to specific microarray electrodes. First, microarray probes are hybridized to biotin-labeled targets, second, the HRP-streptavidin conjugate binds to biotin, and enzymatic oxidation of the electron donor substrate then occurs.

View Article and Find Full Text PDF

We show that multiple enzyme tags may be used in an immunoassay format or for the detection of sequence-specific DNA on microarrays. The assays may be multiplexed and monitored under separate solution and voltage differences. Thus, the detection method relies on an electrochemical detection format, whereby multiple enzymes can be sensed.

View Article and Find Full Text PDF

Purpose: To evaluate the imaging of hemodialysis arteriovenous (AV) fistulas and grafts with use of magnetic resonance (MR) angiography with generalized autocalibrating partially parallel acquisition (GRAPPA) and time-resolved echo-sharing angiographic technique (TREAT) and compare the findings with those of digital subtraction angiography (DSA).

Materials And Methods: The vascular tree directly related to AV fistulas and grafts was divided into nine segments. Images of each segment obtained on GRAPPA MR angiography were evaluated for the presence of stenosis, occlusion, and any other disease (eg, pseudoaneurysm) by two independent observers and compared with a consensus reading of the same segments on DSA imaging.

View Article and Find Full Text PDF

Peptides often have conformational preferences. We simulated 133 peptide 8-mer fragments from six different proteins, sampled by replica-exchange molecular dynamics using Amber7 with a GB/SA (generalized-Born/solvent-accessible electrostatic approximation to water) implicit solvent. We found that 85 of the peptides have no preferred structure, while 48 of them converge to a preferred structure.

View Article and Find Full Text PDF

We study water that is confined within small geometric spaces. We use the Mercedes-Benz (MB) model of water, in NVT and muVT Monte Carlo computer simulations. For MB water molecules between two planes separated by a distance d, we explore the structures, hydrogen bond networks, and thermodynamics as a function of d, temperature T, and water chemical potential mu.

View Article and Find Full Text PDF

A fully integrated and self-contained microfluidic biochip device has been developed to automate the fluidic handling steps required to perform a gene expression study of the human leukemia cell line (K-562). The device consists of a DNA microarray semiconductor chip with 12,000 features and a microfluidic cartridge that consists of microfluidic pumps, mixers, valves, fluid channels and reagent storage chambers. Microarray hybridization and subsequent fluidic handling and reactions (including a number of washing and labeling steps) were performed in this fully automated and miniature device before fluorescent image scanning of the microarray chip.

View Article and Find Full Text PDF

Polymers, including biomolecules such as proteins, have two particularly important types of single-molecule transitions: a helix-coil transition, driven by interactions that are local in the chain, and a collapse transition, driven by nonlocal interactions. A long-standing challenge of polymer statistical mechanics has been to deal with both types of transition in a single theoretical framework. The simplest paradigmatic problem would be a theory of helix-bundle folding.

View Article and Find Full Text PDF

We describe a simple framework for teaching the principles that underlie the dynamical laws of transport: Fick's law of diffusion, Fourier's law of heat flow, the Newtonian viscosity law, and the mass-action laws of chemical kinetics. In analogy with the way that the maximization of entropy over microstates leads to the Boltzmann distribution and predictions about equilibria, maximizing a quantity that E. T.

View Article and Find Full Text PDF

In water, positive ions attract negative ions. That attraction can be modulated if a hydrophobic surface is present near the two ions in water. Using computer simulations with explicit and implicit water, we study how an ion embedded on a hydrophobic surface interacts with another nearby ion in water.

View Article and Find Full Text PDF

We propose a simple analytical model to account for water's hydrogen bonds in the hydrophobic effect. It is based on computing a mean-field partition function for a water molecule in the first solvation shell around a solute molecule. The model treats the orientational restrictions from hydrogen bonding, and utilizes quantities that can be obtained from bulk water simulations.

View Article and Find Full Text PDF

We have identified the zebrafish tortuga (tor) gene by an ENU-induced mutation that disrupts the presomitic mesoderm (PSM) expression of Notch pathway genes. In tor mutants, Notch pathway gene expression persists in regions of the PSM where expression is normally off in wild type embryos. The expression of hairy/Enhancer of split-related 1 (her1) is affected first, followed by the delta genes deltaC and deltaD, and finally, by another hairy/Enhancer of split-related gene, her7.

View Article and Find Full Text PDF