IEEE Trans Vis Comput Graph
December 2014
The complexity in visualizing volumetric data often limits the scope of direct exploration of scalar fields. Isocontour extraction is a popular method for exploring scalar fields because of its simplicity in presenting features in the data. In this paper, we present a novel representation of contours with the aim of studying the similarity relationship between the contours.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
December 2013
Visualizing symmetric patterns in the data often helps the domain scientists make important observations and gain insights about the underlying experiment. Detecting symmetry in scalar fields is a nascent area of research and existing methods that detect symmetry are either not robust in the presence of noise or computationally costly. We propose a data structure called the augmented extremum graph and use it to design a novel symmetry detection method based on robust estimation of distances.
View Article and Find Full Text PDFStudy of symmetric or repeating patterns in scalar fields is important in scientific data analysis because it gives deep insights into the properties of the underlying phenomenon. Though geometric symmetry has been well studied within areas like shape processing, identifying symmetry in scalar fields has remained largely unexplored due to the high computational cost of the associated algorithms. We propose a computationally efficient algorithm for detecting symmetric patterns in a scalar field distribution by analysing the topology of level sets of the scalar field.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
July 2011
Interactive visualization applications benefit from simplification techniques that generate good-quality coarse meshes from high-resolution meshes that represent the domain. These meshes often contain interesting substructures, called embedded structures, and it is desirable to preserve the topology of the embedded structures during simplification, in addition to preserving the topology of the domain. This paper describes a proof that link conditions, proposed earlier, are sufficient to ensure that edge contractions preserve the topology of the embedded structures and the domain.
View Article and Find Full Text PDF