Hydrogels are a promising material for a variety of applications after appropriate functional and structural design, which alters the physicochemical properties and cell signaling pathways of the hydrogels. Over the past few decades, considerable scientific research has made breakthroughs in a variety of applications such as pharmaceuticals, biotechnology, agriculture, biosensors, bioseparation, defense, and cosmetics. In the present review, different classifications of hydrogels and their limitations have been discussed.
View Article and Find Full Text PDFThe development of biocompatible nanocomposite hydrogels with effective wound healing/microbicidal properties is needed to bring out their distinguished characteristics in clinical applications. The positive interaction between graphene oxide/reduced graphene oxide (GO/rGO) and hydrogels and aloe vera gel represents a strong strategy for the advancement of therapeutic approaches for wound healing. In this study, the synthesis, characterization, and angiogenic properties of graphene-based nanocomposite gels have been corroborated and substantiated through several in vitro and in vivo assays.
View Article and Find Full Text PDFRegenerative medicine, a therapeutic approach using stem cells, aims to rejuvenate and restore the normalized function of the cells, tissues, and organs that are injured, malfunctioning, and afflicted. This influential technology reaches its zenith when it is integrated with the CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) technology of genome editing. This tool acts as a programmable restriction enzyme system, which targets DNA as well as RNA and gets redeployed for the customization of DNA/RNA sequences.
View Article and Find Full Text PDFThe rising global population and their food habits result in food wastage and cause an obstacle in its treatment and disposal. Due to the rapid shift in the lifestyle of the human population and urbanization, almost one-third of the food produced is wasted from various sectors like domestic sources, agricultural sectors, and industrial sectors. These food resources squandered are rich in organic biomolecules which can cause complications upon direct disposal in the environment.
View Article and Find Full Text PDF