Hydrogels are a promising material for a variety of applications after appropriate functional and structural design, which alters the physicochemical properties and cell signaling pathways of the hydrogels. Over the past few decades, considerable scientific research has made breakthroughs in a variety of applications such as pharmaceuticals, biotechnology, agriculture, biosensors, bioseparation, defense, and cosmetics. In the present review, different classifications of hydrogels and their limitations have been discussed.
View Article and Find Full Text PDFThe development of biocompatible nanocomposite hydrogels with effective wound healing/microbicidal properties is needed to bring out their distinguished characteristics in clinical applications. The positive interaction between graphene oxide/reduced graphene oxide (GO/rGO) and hydrogels and aloe vera gel represents a strong strategy for the advancement of therapeutic approaches for wound healing. In this study, the synthesis, characterization, and angiogenic properties of graphene-based nanocomposite gels have been corroborated and substantiated through several in vitro and in vivo assays.
View Article and Find Full Text PDF