Accelerating genetic gain in crop improvement is required to ensure improved yield and yield stability under increasingly challenging climatic conditions. This case study demonstrates the effective confluence of innovative breeding technologies within a collaborative breeding framework to develop and rapidly introgress imidazolinone Group 2 herbicide tolerance into an adapted Australian chickpea genetic background. A well-adapted, high-yielding desi cultivar PBA HatTrick was treated with ethyl methanesulfonate to generate mutations in the () gene.
View Article and Find Full Text PDFBackground: Faba bean (Vicia faba L.) is an important crop in Australian farming systems, however, weed control is a major constraint due to a lack of in-crop broadleaf herbicide options. To address this, we developed acetohydroxyacid synthase (AHAS) inhibitor herbicide tolerance in faba bean using mutagenesis techniques.
View Article and Find Full Text PDFBackground: Weed competition is a major limitation to worldwide lentil (Lens culinaris Medik.) production in part due to limited effective safe herbicide options. Metribuzin is a photosystem II inhibiting herbicide that provides broad spectrum weed control, however it causes excessive injury in lentil.
View Article and Find Full Text PDF