Publications by authors named "Dilek Telci"

Article Synopsis
  • - Protein carbonylation is a key irreversible modification that indicates oxidative stress but lacks distinct spectroscopic properties, making it challenging to detect without specific chemical probes.
  • - The protocol details the synthesis of a new fluorescent probe, 2Hzin5NP, which reacts rapidly with carbonyls to create a detectable product, and outlines the methods to evaluate its effects on cell health and carbonylation.
  • - The probe can differentiate carbonylation profiles in response to oxidative stress in healthy and cancerous cells, providing insight into varying oxidative stress levels between these conditions.
View Article and Find Full Text PDF

Breast cancer is one of the most common cancers and a significant cause of death in females worldwide. For effective breast cancer treatment, using systems with a promising delivery of anticancer agents is an important strategy. Peptide 18 (P18), a tumor-homing peptide, shows a high binding affinity toward breast cancer cells.

View Article and Find Full Text PDF

Background: Nanocarrier-based systems have cultivated significant improvements in prostate cancer therapy. However, the efforts are still limited in clinical applicability, and more research is required for the development of effective strategies. Here, we describe a novel nanoliposomal system for targeted apoptotic gene delivery to prostate cancer.

View Article and Find Full Text PDF

This study focuses on creating a specialized nanogel for targeted drug delivery in cancer treatment, specifically targeting prostate cancer. This nanogel (referred to as SGK 636/Peptide 563/PEtOx nanogel) is created using hydrophilic poly(2-ethyl-2-oxazoline) (PEtOx) through a combination of living/cationic ring-opening polymerization (CROP) and alkyne-azide cycloaddition (CuAAC) "click" chemical reactions. A fluorescent probe (BODIPY) is also conjugated with the nanogel to monitor drug delivery.

View Article and Find Full Text PDF

Prostate cancer is a global disease that negatively affects the quality of life. Although various strategies against prostate cancer have been developed, only a few achieved tumor-specific targeting. Therefore, a special emphasis has been placed on the treatment of cancer using nano-carrier-encapsulated chemotherapeutic agents conjugated with tumor-homing peptides.

View Article and Find Full Text PDF

In wound healing, the TG2 enzyme plays a dual functional role. TG2 has been shown to regulate extracellular matrix (ECM) stabilization by its transamidase activity while increasing cell migration by acting as a cell adhesion molecule. In this process, nitric oxide (NO) plays a particularly important role by nitrosylation of free cysteine ​​residues on TG2, leading to the irreversible inactivation of the catalytic activity.

View Article and Find Full Text PDF

Breast cancer, a heterogeneous disease, has the highest incidence rate and is a major cause of death in females worldwide. Drug delivery by using nanotechnology has shown great promise for improving cancer treatment. Nanoliposomes are known to have enhanced accumulation ability in tumors due to prolonged systemic circulation.

View Article and Find Full Text PDF

The SARS-CoV-2 virus caused the most severe pandemic around the world, and vaccine development for urgent use became a crucial issue. Inactivated virus formulated vaccines such as Hepatitis A and smallpox proved to be reliable approaches for immunization for prolonged periods. In this study, a gamma-irradiated inactivated virus vaccine does not require an extra purification process, unlike the chemically inactivated vaccines.

View Article and Find Full Text PDF

As a key component of the cell-to-cell communication, small extracellular vesicles (SEVs) released from various sources are known to be affecting the physiological conditions of the target cells. Although it has been suggested that edible plant-derived nanoparticles contributes to the cross kingdom communication with the mammalian cells, the effect of these particles on cancer cell progression still needs a further exploration. Here, we isolated and then characterized garlic derived SEVs by nanoparticle tracking analysis, electron microscopy and SEV surface antibodies.

View Article and Find Full Text PDF

Aims: The aim of this study is to develop targeted nanoliposome formulations to provide efficient treatment for breast cancer. In this study, peptide 18-modified poly(2-ethyl-2-oxazoline)-dioleoylphosphatidylethanolamine (P18-PEtOx-DOPE), was synthesised to construct nanoliposomes.

Methods: Doxorubicin (DOX) was encapsulated into the nanoliposomes by ethanol injection method.

View Article and Find Full Text PDF

High toxicity caused by chemotherapeutic drugs and the acquisition of drug resistance by cancer cells are the major drawbacks in cancer therapy. A promising approach to overcome the posed barriers is conjugating tumor-homing peptides to drugs or nanocarriers. Such high-affinity peptides can specifically target surface markers overexpressed by cancer cells, ensuring a rapid and cancer-specific uptake of the drugs.

View Article and Find Full Text PDF

The equipping of nanoparticles with the peptide moiety recognizing a particular receptor, enables cell or tissue-specific targeting, therefore the optimization of the targeted nanoparticles is a key factor in the formulation design process. In this paper, we report the optimization concept of Doxorubicin encapsulating PEtOx-b-PLA polymersome formulation equipped with Peptide18, which is a breast cancer recognizing tumor homing peptide, and the unveiling of the cell-specific delivery potential. The most dominant formulation parameters, which are the polymer to Doxorubicin mass ratio (w/w) and the aqueous to organic phase ratio (v/v), were optimized using Central Composite Design (CCD) based Response Surface Methodology.

View Article and Find Full Text PDF

COVID-19 outbreak caused by SARS-CoV-2 created an unprecedented health crisis since there is no vaccine for this novel virus. Therefore, SARS-CoV-2 vaccines have become crucial for reducing morbidity and mortality. In this study, in vitro and in vivo safety and efficacy analyzes of lyophilized vaccine candidates inactivated by gamma-irradiation were performed.

View Article and Find Full Text PDF

Fatty acids (FAs) synthesis mechanism has various regulators such as fatty acid synthase (FASN), AMP-regulated protein kinase (AMPK), or mammalian target of rapamycin (mTOR), which are aberrantly dysregulated in various pancreatic cancer cells. In this study, we aim to understand the regulatory role of palbociclib, a CDK4/6 inhibitor, on the cellular energy metabolism through regulation of AMPK/mTOR signaling by modulation of intracellular miR-33a levels in Panc-1 and MiaPaCa-2 cells. Palbociclib downregulated FAs metabolism more effectively in MiaPaCa-2 cells than Panc-1 cells.

View Article and Find Full Text PDF

Prostate cancer is the most common cancer, which is about 15-20% among male cancers worldwide. As most common strategies such as radiotherapy, chemotherapy, or surgery alone can be unsuccessful in the treatment of prostate cancer, this study aims to develop a new approach to deliver newly generated proapoptotic gene, BIKDDA, to androgen independent prostate cancer cells, 22RV1, using new generation nanocarriers called ellipsoids. As far as it is known, this is the first study that assesses the ability of proapoptotic gene BIKDDA to induce apoptosis in prostate cancer cell.

View Article and Find Full Text PDF

Tissue transglutaminase (TG2) is a multifunctional protein that can act as a cross-linking enzyme, GTPase/ATPase, protein kinase, and protein disulfide isomerase. TG2 is involved in cell adhesion, migration, invasion, and growth, as well as epithelial-mesenchymal transition (EMT). Our previous findings indicate that the increased expression of TG2 in renal cell carcinoma (RCC) results in tumor metastasis with a significant decrease in disease- and cancer-specific survival outcome.

View Article and Find Full Text PDF

With the rapid development of chemical biology, many diagnostic fluorophore-based tools were introduced to specific biomolecules by covalent binding. Bioorthogonal reactions have been widely utilized to manage challenges faced in clinical practice for early diagnosis and treatment of several tumor samples. Herein, we designed a small molecule fluorescent-based biosensor, 2Hydrazine-5nitrophenol (2Hzin5NP), which reacts with the carbonyl moiety of biomolecules through bioorthogonal reaction, therefore can be utilized for the detection of biomolecule carbonylation in various cancer cell lines.

View Article and Find Full Text PDF

Phospholipase A2 (PLA2) enzymes are small lipolytic hydrolases that can regulate immune responses through generation of Arachidonic Acid (AA), a precursor molecule of lipid mediators like prostaglandins, leukotrienes and thromboxanes. One of the family members of PLA2, secretory Phospholipase A2 Group IIA (PLA2G2A), was associated with different types of malignancies including prostate cancer. Elevated serum levels of PLA2G2A was found in prostate cancer (PCa) patients and associated with increased tumor grade in literature.

View Article and Find Full Text PDF

As cartilage is incapable of self-healing upon severe degeneration because of the lack of blood vessels, cartilage tissue engineering is gaining importance in the treatment of cartilage defects. This study was designed to improve cartilage tissue regeneration by expressing tissue transglutaminase variant 2 (TGM2_v2) in mesenchymal stem cells (MSC) derived from bone marrow of rats. For this purpose, rat MSCs transduced with TGM2_v2 were grown and differentiated on three-dimensional polybutylene succinate (PBSu) and poly-l-lactide (PLLA) blend scaffolds.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Hypericum olympicum L. (Hypericaceae) flowering aerial parts has been utilized in Turkish folk medicine as a remedy against inflamed skin problems.

Aim Of The Study: This study was designed to state the effect of H.

View Article and Find Full Text PDF

The mortality rate of pancreatic cancer has close parallels to its incidence rate because of limited therapeutics and lack of effective prognosis. Despite various novel chemotherapeutics combinations, the 5-year survival rate is still under 5%. In the current study, we aimed to modulate the aberrantly activated PI3K/AKT pathway and epithelial-mesenchymal transition (EMT) signaling with the treatment of CDK4/6 inhibitor PD-0332991 (palbociclib) in Panc-1 and MiaPaCa-2 pancreatic cancer cells.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is the predominant type of kidney cancer. Mammalian target of rapamycin (mTOR) inhibitor everolimus is currently used as a second-line therapy for sorafenib or sunitinib-refractory metastatic RCC patients. The clinical limitation confronted during everolimus therapy is the onset of drug resistance that decreases the efficacy of the drug.

View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is a multifunctional crosslinking enzyme that displays transamidation, protein disulfide isomerase, protein kinase, as well as GTPase and ATPase activities. TG2 can also act as an adhesion molecule involved in the syndecan and integrin receptor signaling. In recent years, TG2 was implicated in cancer progression, survival, invasion, migration, and stemness of many cancer types, including renal cell carcinoma (RCC).

View Article and Find Full Text PDF

A new efficient, non-viral gene delivery cationic polymeric micellar system was developed by partial hydrolysis of poly(2-ethyl-2-oxazoline) (PEtOx) with two different hydrolysis percentages of PEtOx (30% and 60%) to reduce the disadvantages of the PEI. These self-assemble amphiphilic cationic micelles prepared from poly(2-ethyl-2-oxazoline)-co-poly(ethyleneimine)-block-poly(ɛ-caprolactone) (PEtOx-co-PEI-b-PCL) (PPP30) and poly(2-ethyl-2-oxazoline) -co-poly(ethyleneimine)-block-poly(ɛ-caprolactone) (PEtOx-co-PEI-b-PCL) (PPP60) block copolymers were successfully condensed with pEGFP-C3 plasmid DNA via electrostatic interactions to form micelle/DNA complexes with desirable particle sizes. All formulations showed low critical micelle concentration (CMC) values that means highly stable in serum containing medium.

View Article and Find Full Text PDF

Purpose: Renal cell carcinoma (RCC) accounts for approximately 80% of the primary renal cancers, and current treatment strategies are not sufficient to provide a certain solution. Since there are not many treatment options, interest in discovery of alternative drugs has increased.

Methods: In the current study, anticancer activity of a novel heterodinuclear Cu(II)-Mn(II) complex (Schiff base-SB) in combination with poly(ethylene oxide) and poly(propylene oxide) block copolymer (pluronic) P85 was tested against RCC.

View Article and Find Full Text PDF