The compound [5,10,15,20-tetrakis(4-fluoro-2,6-dimethylphenyl)porphyrinato]platinum(II), [Pt(CHFN)] or Pt(II)TFP, has been synthesized and structurally characterized by single-crystal X-ray crystallography. The Pt porphyrin exhibits a long-lived phosphorescent excited state (τ = 66 µs), which has been characterized by transient absorption and emission spectroscopy. The phosphorescence is extremely sensitive to oxygen, as reflected by a quenching rate constant of 5.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
February 2023
Quadruple-bond dimolybdenum complexes provide invaluable insight into the two-electron bond, with structural chemistry providing a foundation for examination of bond properties. The synthesis and solid-state structure of the quadruple-bonded dimolybdenum(II) complex tetra-kis-(-4-methyl-benzoato- :')bis[(tetra-hydro-furan-κ)molybdenum(II)] tetra-hydro-furan disolvate, [Mo(CHO)(CHO)]·2CHO, are presented. This complex crystallizes in a triclinic cell with low-symmetry space group .
View Article and Find Full Text PDFThe monoanionic tetrapyrrolic macrocycle ,-tetradehydrocorrin (TDC) resides chemically between corroles and corrins. This chemical space remains largely unexplored due to a lack of reliable synthetic strategies. We now report the preparation and characterization of Co(II)- and Ni(II)-metalated TDC derivatives ( and , respectively) with a combination of crystallographic, electrochemical, computational, and spectroscopic techniques.
View Article and Find Full Text PDFTwo electrons in two orbitals give rise to four states. When the orbitals are weakly coupled as in the case for the d orbitals of quadruple bond species, two of the states are diradical in character with electrons residing in separate orbitals and two of the states are zwitterionic with electrons paired in one orbital or the other. By measuring one-and two-photon spectra, the one-electron (ΔW) and two-electron (K) energies may be calculated, which are the determinants of the state energies of the four-state model for the two-electron bond.
View Article and Find Full Text PDFSignificanceThe chemical reduction of unsaturated bonds occurs by hydrogenation with H as the reductant. Conversely, in biology, the unavailability of H engenders the typical reduction of unsaturated bonds with electrons and protons from different cofactors, requiring olefin hydrogenation to occur by proton-coupled electron transfer (PCET). Moreover, the redox noninnocence of tetrapyrrole macrocycles furnishes unusual PCET intermediates, including the phlorin, which is an intermediate in tetrapyrrole ring reductions.
View Article and Find Full Text PDFZn(II), Cu(II), and Ni(II) 5,10,15,20-tetrakis(4-fluoro-2,6-dimethylphenyl)porphyrins (TFPs) have been synthesized and characterized. The electronic spectroscopy and cyclic voltammetry of these compounds, along with the free-base macrocycle (2H-TFP), have been determined; 2H-TFP was also structurally characterized by X-ray crystallography. The Cu(II)TFP exhibits catalytic activity for the hydrogen evolution reaction (HER).
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
January 2022
The study of quadruple bonds between transition metals, in particular those of dimolybdenum, has revealed much about the two-electron bond. The solid-state structure of the quadruple-bonded dimolybdenum(II) complex tetra-kis-[μ-4-(tri-fluoro-methyl)-benzoato-κ :']bis[(tetra-hydro-furan-κ)molybdenum(II)] 0.762-pentane 0.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
March 2021
The dichromium Pacman complex (dmx)CrCl·CHO (1) [(dmx)H is a dimethylxanthene-bridged cofacial (bis)dipyrrin, CHNO] was synthesized by salt metathesis using anhydrous CrCl and previously reported (dmx)K. Treatment of 1 with two equivalents of the reductant potassium graphite afforded K(dmx)CrCl(thf)·0.5CHO·0.
View Article and Find Full Text PDFPalladium 2-di-cyclo-hexyl-phosphanyl-2',6'-diisopropoxybiphenyl (Pd-RuPhos) catalysts demonstrate high catalytic activity for Negishi cross-couplings of sterically hindered aryl halides, for Suzuki-Miyaura cross-couplings of tosyl-ated olefins, and for Buchwald-Hartwig amination of sterically hindered amines. The solid-state structure of the free RuPhos ligand, CHOP, is reported herein for the first time. RuPhos crystallizes in a triclinic cell containing two independent mol-ecules of the phosphine without any lattice solvent.
View Article and Find Full Text PDFTwo complementary rational synthetic routes have been developed in order to synthesize hangman chlorins, which differ with regard to the order of the installation (pre- and post-formation of the chlorin macrocycle) and position of the xanthene backbone about the chlorin periphery. The versatility of the synthetic method is demonstrated with the preparation of ten new hangman chlorins bearing a xanthene backbone and a pendant carboxylic acid. Cyclic voltammograms of hangman chlorins exhibit a hangman effect derived from intermolecular proton transfer.
View Article and Find Full Text PDFSunlight is an abundant energy source for a sustainable society. Indeed, photosynthetic organisms harness solar radiation to build the world around us by synthesizing energy-rich compounds from water and CO. However, numerous energy conversion bottlenecks in the natural system limits the overall efficiency of photosynthesis; the most efficient plants do not exceed solar storage efficiencies of 1%.
View Article and Find Full Text PDFThe development of more effective energy conversion processes is critical for global energy sustainability. The design of molecular electrocatalysts for the hydrogen evolution reaction is an important component of these efforts. Proton-coupled electron transfer (PCET) reactions, in which electron transfer is coupled to proton transfer, play an important role in these processes and can be enhanced by incorporating proton relays into the molecular electrocatalysts.
View Article and Find Full Text PDFThe hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism.
View Article and Find Full Text PDFA cationic, copper(II)-containing ligand, derived from bulky 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin, Cu(T4), and two sterically friendlier forms, [trans-5,15-di(N-methylpyridinium-4-yl)porphyrinato]copper(II), Cu(tD4), and [cis-5,10-di(N-methylpyridinium-4-yl)porphyrinato]copper(II), Cu(cD4), bind to DNA and RNA hosts. Six hairpin-forming RNA 18-mer sequences and two previously studied DNA analogues serve as convenient binding platforms of programmable base composition. A crystal structure shows that the copper center of Cu(tD4) is four-coordinate, establishing compatibility with intercalative binding as well as susceptibility to solvent-induced emission quenching.
View Article and Find Full Text PDFHangman Fe(III) corroles catalyse H(2)O(2) disproportionation at a faster rate and display a more pronounced hangman effect than their one electron oxidized analogues owing to their ability to bypass high energy intermediates by redox-leveling derived from the use of the corrole as a non-innocent ligand.
View Article and Find Full Text PDFCobalt hangman corrole, bearing β-octafluoro and meso-pentafluorophenyl substituents, is an active water splitting catalyst. When immobilized in Nafion films, the turnover frequencies for the 4e(-)/4H(+) process at the single cobalt center of the hangman platform approach 1 s(-1). The pH dependence of the water splitting reaction suggests a proton-coupled electron transfer (PCET) catalytic mechanism.
View Article and Find Full Text PDFA cobalt(II) hangman porphyrin with a xanthene backbone and a carboxylic acid hanging group catalyzes the electrochemical production of hydrogen from benzoic and tosic acid in acetonitrile solutions. We show that Co(II)H is exclusively involved in the generation of H(2) from weak acids. In a stronger acid, a Co(III)H species is observed electrochemically, but it still needs to be further reduced to Co(II)H before H(2) generation occurs.
View Article and Find Full Text PDFIron corroles modified with a xanthene scaffold are delivered from easily available starting materials in abbreviated reaction times. These new iron corroles have been spectroscopically examined with particular emphasis on defining the oxidation state of the metal center. Investigation of their electronic structure using (57)Fe Mössbauer spectroscopy in conjunction with density functional theory (DFT) calculations reveals the non-innocence of the corrole ligand.
View Article and Find Full Text PDFThe construction of a new class of compounds--the hangman corroles--is provided efficiently by the modification of macrocyclic forming reactions from bilanes. Hangman cobalt corroles are furnished in good yields from a one-pot condensation of dipyrromethane with the aldehyde of a xanthene spacer followed by metal insertion using microwave irradiation. In high oxidation states, X-band EPR spectra and DFT calculations of cobalt corrole axially ligated by chloride are consistent with the description of a Co(III) center residing in the one-electron oxidized corrole macrocycle.
View Article and Find Full Text PDFA two-step synthetic method has been designed to furnish hangman porphyrins in good yields from easily available starting materials. The use of the microwave irradiation technique has been found to be valuable for delivering the carboxylic acid hanging group in a much simplified and less time-consuming basic ester hydrolysis (4 h vs 7 days under harsh acidic conditions). The new route facilitates the synthesis of various hangman porphyrins that previously had limited or no access.
View Article and Find Full Text PDFThe in vitro photodynamic therapy activity of four imidazole-substituted metalloporphyrins has been studied using human (HeLa) and mouse (CT26) cancer cell lines: an anionic Zn porphyrin and a homologous series of three cationic Zn, Pd or InCl porphyrins. A dramatic difference in phototoxicity was found: Pd cationic>InCl cationic>Zn cationic>Zn anionic. HeLa cells were more susceptible than CT26 cells.
View Article and Find Full Text PDFA new route to bilanes and porphyrins bearing four distinct meso substituents has been studied to elucidate the scope and gain entry to previously inaccessible compounds. The route entails (i) synthesis of a 1-bromo-19-acylbilane by acid-catalyzed condensation of a 1-acyldipyrromethane and a 9-bromodipyrromethane-1-carbinol and (ii) intramolecular cyclization of the 1-bromo-19-acylbilane in the presence of a metal salt (MgBr2, 3 mol equiv) and a non-nucleophilic base (DBU, 10 mol equiv) in a noncoordinating solvent (toluene) at 115 degrees C exposed to air to afford the corresponding magnesium(II) porphyrin. In this study, two sets of bilanes were initially prepared to explore substituent effects.
View Article and Find Full Text PDFNew methodology is described for the synthesis of porphyrins bearing four (A 4, cis-A 2B 2, cis-ABC 2, trans-A 2B 2) or fewer (A, cis-AB, cis-A 2, trans-A 2) meso substituents. The method entails condensation of two 1-acyldipyrromethanes in the presence of a metal salt (MgBr 2, 3 mol equiv) and a noncoordinating base (DBU, 10 mol equiv) in a noncoordinating solvent (toluene) with heating (conventional or microwave irradiation) and exposure to air. The rational synthesis of trans-A 2B 2- or trans-A 2-porphyrins was achieved via condensation of two identical 1-acyldipyrromethanes.
View Article and Find Full Text PDFA new strategy for preparing porphyrins that bear up to four different meso-substituents (ABCD-porphyrins) relies on two key reactions. One key reaction entails a directed synthesis of a 1-protected 19-acylbilane by acid-catalyzed condensation at high concentration (0.5 M) of a 1-acyldipyrromethane and a 9-protected dipyrromethane-1-carbinol (derived from a 9-protected 1-acyldipyrromethane).
View Article and Find Full Text PDF