Proc Natl Acad Sci U S A
September 2022
Muscle cell fusion is a multistep process where the final step of the reaction drives progression beyond early hemifusion events to complete fusion. This step requires activity of the muscle-specific fusogen Myomerger, a single-pass transmembrane protein containing 84 amino acids with an ectodomain that includes two α-helices. Previous studies have demonstrated that Myomerger acts by destabilizing membranes through generation of elastic stresses in the outer leaflet of the plasma membrane.
View Article and Find Full Text PDFGlycosylphosphatidylinositol (GPI) anchoring of proteins is a eukaryotic, post-translational modification catalyzed by GPI transamidase (GPI-T). The GPI-T is composed of five membrane-bound subunits: Gpi8, Gaa1, Gpi16, Gpi17, and Gab1. GPI-T has been recalcitrant to structure and function studies because of its complexity and membrane-solubility.
View Article and Find Full Text PDFMuscle cell fusion is a multistep process involving cell migration, adhesion, membrane remodeling and actin-nucleation pathways to generate multinucleated myotubes. However, molecular brakes restraining cell-cell fusion events have remained elusive. Here we show that transforming growth factor beta (TGFβ) pathway is active in adult muscle cells throughout fusion.
View Article and Find Full Text PDFMyomerger is a muscle-specific membrane protein involved in formation of multinucleated muscle cells by mediating the transition from the early hemifusion stage to complete fusion. Here, we considered the physical mechanism of the Myomerger action based on the hypothesis that Myomerger shifts the spontaneous curvature of the outer membrane leaflets to more positive values. We predicted, theoretically, that Myomerger generates the outer leaflet elastic stresses, which propagate into the hemifusion diaphragm and accelerate the fusion pore formation.
View Article and Find Full Text PDFBackground: The dipeptide composition-based Instability Index (II) is one of the protein primary structure-dependent methods available for in vivo protein stability predictions. As per this method, proteins with II value below 40 are stable proteins. Intracellular protein stability principles guided the original development of the II method.
View Article and Find Full Text PDFClassic mechanisms for membrane fusion involve transmembrane proteins that assemble into complexes and dynamically alter their conformation to bend membranes, leading to mixing of membrane lipids (hemifusion) and fusion pore formation. Myomaker and Myomerger govern myoblast fusion and muscle formation but are structurally divergent from traditional fusogenic proteins. Here, we show that Myomaker and Myomerger independently mediate distinct steps in the fusion pathway, where Myomaker is involved in membrane hemifusion and Myomerger is necessary for fusion pore formation.
View Article and Find Full Text PDFGlycosylphosphatidylinositol transamidase (GPI-T) catalyzes the post-translational addition of the GPI anchor to the C-terminus of some proteins. In most eukaryotes, Gpi8, the active site subunit of GPI-T, is part of a hetero-pentameric complex containing Gpi16, Gaa1, Gpi17, and Gab1. Gpi8, Gaa1, and Gpi16 co-purify as a heterotrimer from Saccharomyces cerevisiae, suggesting that they form the core of the GPI-T.
View Article and Find Full Text PDFMultinucleated skeletal muscle fibers form through the fusion of myoblasts during development and regeneration. Previous studies identified myomaker (Tmem8c) as a muscle-specific membrane protein essential for fusion. However, the specific function of myomaker and how its function is regulated are unknown.
View Article and Find Full Text PDFDespite the importance of cell fusion for mammalian development and physiology, the factors critical for this process remain to be fully defined, which has severely limited our ability to reconstitute cell fusion. Myomaker (Tmem8c) is a muscle-specific protein required for myoblast fusion. Expression of myomaker in fibroblasts drives their fusion with myoblasts, but not with other myomaker-expressing fibroblasts, highlighting the requirement of additional myoblast-derived factors for fusion.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2016
During skeletal muscle development, myoblasts fuse to form multinucleated myofibers. Myomaker [Transmembrane protein 8c (TMEM8c)] is a muscle-specific protein that is essential for myoblast fusion and sufficient to promote fusion of fibroblasts with muscle cells; however, the structure and biochemical properties of this membrane protein have not been explored. Here, we used CRISPR/Cas9 mutagenesis to disrupt myomaker expression in the C2C12 muscle cell line, which resulted in complete blockade to fusion.
View Article and Find Full Text PDFCrit Rev Biochem Mol Biol
May 2014
Cancer is second only to heart disease as a cause of death in the US, with a further negative economic impact on society. Over the past decade, details have emerged which suggest that different glycosylphosphatidylinositol (GPI)-anchored proteins are fundamentally involved in a range of cancers. This post-translational glycolipid modification is introduced into proteins via the action of the enzyme GPI transamidase (GPI-T).
View Article and Find Full Text PDF