Publications by authors named "Dikaia Xenaki"

Chronic obstructive pulmonary disease (COPD) is characterized by progressive and incurable airflow obstruction and chronic inflammation. Both TGF-β1 and CXCL8 have been well described as fundamental to COPD progression. DNA methylation and histone acetylation, which are well-understood epigenetic mechanisms regulating gene expression, are associated with COPD progression.

View Article and Find Full Text PDF

The inflammatory response is a central aspect of the human immune system that acts as a defense mechanism to protect the body against infections and injuries. A dysregulated inflammatory response is a major health concern, as it can disrupt homeostasis and lead to a plethora of chronic inflammatory conditions. These chronic inflammatory diseases are one of the major causes of morbidity and mortality worldwide and the need for them to be managed in the long term has become a crucial task to alleviate symptoms and improve patients' overall quality of life.

View Article and Find Full Text PDF

Chronic airway inflammation and oxidative stress play crucial roles in the pathogenesis of chronic inflammatory lung diseases, with airway inflammation being a key driving mechanism of oxidative stress in the lungs. Inflammatory responses in the lungs activate neutrophils and/or eosinophils, leading to the generation of hypohalous acids (HOX). These HOX oxidants can damage the extracellular matrix (ECM) structure and may influence cell-ECM interactions.

View Article and Find Full Text PDF
Article Synopsis
  • * NFκB decoy oligodeoxynucleotides (ODNs) can inhibit the inflammatory processes by blocking NFκB-mediated cytokines but face challenges in effective delivery due to their instability and poor cellular uptake when administered directly.
  • * Recent advancements in modifying these ODNs and using nanotechnology are showing promise in improving their effectiveness for treating respiratory diseases, while also addressing existing delivery challenges.
View Article and Find Full Text PDF

Rationale: In COPD, small airway fibrosis occurs due to increased extracellular matrix (ECM) deposition in and around the airway smooth muscle (ASM) layer. Studies of immune cells and peripheral lung tissue have shown that epigenetic changes occur in COPD but it is unknown whether airway mesenchymal cells are reprogrammed.

Objectives: Determine if COPD ASM cells have a unique epigenetic response to profibrotic cytokine transforming growth factor β1 (TGF-β1).

View Article and Find Full Text PDF

Eosinophils are bi-lobed, multi-functional innate immune cells with diverse cell surface receptors that regulate local immune and inflammatory responses. Several inflammatory and infectious diseases are triggered with their build up in the blood and tissues. The mobilization of eosinophils into the lungs is regulated by a cascade of processes guided by Th2 cytokine generating T-cells.

View Article and Find Full Text PDF

Diverging susceptibility and severity in respiratory diseases is prevalent between males and females. Sex hormones have inconclusively been attributed as the cause of these differences, however, strong evidence exists promoting genetic factors leading to sexual dimorphism. As such, we investigate differential proinflammatory cytokine (interleukin (IL)-6 and CXCL8) release from TNF-α stimulated primary human lung fibroblasts in vitro.

View Article and Find Full Text PDF
Article Synopsis
  • Research shows that iron levels influence asthma severity, with lower cell-free iron found in the lungs of asthma patients correlating with reduced airflow (FEV) and poorer lung function.
  • Increased iron-loaded cell numbers relate to worse lung function ratios and more T2 inflammation in asthma, suggesting a role for iron in the disease's progression.
  • Experimental models mimic these findings, indicating that elevated iron levels can provoke asthma-like symptoms, emphasizing the need for new treatments targeting iron regulation in respiratory diseases.
View Article and Find Full Text PDF

Increased iron levels and dysregulated iron homeostasis, or both, occur in several lung diseases. Here, the effects of iron accumulation on the pathogenesis of pulmonary fibrosis and associated lung function decline was investigated using a combination of murine models of iron overload and bleomycin-induced pulmonary fibrosis, primary human lung fibroblasts treated with iron, and histological samples from patients with or without idiopathic pulmonary fibrosis (IPF). Iron levels are significantly increased in iron overloaded transferrin receptor 2 (Tfr2) mutant mice and homeostatic iron regulator (Hfe) gene-deficient mice and this is associated with increases in airway fibrosis and reduced lung function.

View Article and Find Full Text PDF

Neovascularization, increased basal membrane thickness and increased airway smooth muscle (ASM) bulk are hallmarks of airway remodelling in asthma. In this study, we examined connective tissue growth factor (CTGF) dysregulation in human lung tissue and animal models of allergic airway disease. Immunohistochemistry revealed that ASM cells from patients with severe asthma (A) exhibited high expression of CTGF, compared to mild and non-asthmatic (NA) tissues.

View Article and Find Full Text PDF

Roflumilast is an orally active phosphodiesterase 4 inhibitor approved for use in chronic obstructive pulmonary disease. Roflumilast N-oxide (RNO) is the active metabolite of roflumilast and has a demonstrated antiinflammatory impact in vivo and in vitro. To date, the effect of RNO on the synthetic function of airway smooth muscle (ASM) cells is unknown.

View Article and Find Full Text PDF