Publications by authors named "Dijkstra M"

Melting in two-dimensional systems has remained controversial as theory, simulations, and experiments show contrasting results. One issue that obscures this discussion is whether or not theoretical predictions on strictly 2D systems describe those on quasi-2D experimental systems, where out-of-plane fluctuations may alter the melting mechanism. Using event-driven molecular dynamics simulations, we find that the peculiar two-stage melting scenario of a continuous solid-hexatic and a first-order hexatic-liquid transition as observed for a truly 2D system of hard disks [Bernard and Krauth, Phys.

View Article and Find Full Text PDF

Objective: In the past decennium, the management of short-neck infrarenal and juxtarenal aortic aneurysms with fenestrated endovascular aneurysm repair (FEVAR) has been shown to be successful, with good early and midterm results. Recently, a new fenestrated device, the fenestrated Anaconda (Vascutek, Renfrewshire, Scotland), was introduced. The aim of this study was to present the current Dutch experience with this device.

View Article and Find Full Text PDF

We study the influence of a magnetic field on the biaxial nematic phase of board-like goethite colloids both experimentally and theoretically. Using synchrotron small angle X-ray scattering techniques we find that applying a magnetic field along the main director of the biaxial nematic phase leads to a clear decrease in biaxiality with increasing magnetic field strength. Above a certain magnetic field strength the biaxiality is completely suppressed and the biaxial nematic phase transforms into an ordinary prolate uniaxial nematic phase.

View Article and Find Full Text PDF

Nanoparticles with unconventional shapes may exhibit different types of assembly architectures that depend critically on the environmental conditions under which they are formed. Here, we demonstrate how the presence of polymer (polymethyl methacrylate, PMMA) molecules in a solution, in which CdSe(core)/CdS(pods) octapods are initially dispersed, affects the octapod-polymer organization upon solvent evaporation. We show that a fast drop-drying process can induce a remarkable two-dimensional (2D) self-assembly of octapods at the polymer/air interface.

View Article and Find Full Text PDF

Cytology-based nation-wide cervical screening has led to a substantial reduction of the incidence of cervical cancer in western countries. However, the sensitivity of cytology for the detection of high-grade precursor lesions or cervical cancer is limited; therefore, repeated testing is necessary to achieve program effectiveness. Additionally, adenocarcinomas and its precursors are often missed by cytology.

View Article and Find Full Text PDF

We present a combined experimental, theoretical, and simulation study on the self-assembly of colloidal hexagonal bipyramid- and hexagonal bifrustum-shaped ZnS nanocrystals (NCs) into two-dimensional superlattices. The simulated NC superstructures are in good agreement with the experimental ones. This shows that the self-assembly process is primarily driven by minimization of the interfacial free-energies and maximization of the packing density.

View Article and Find Full Text PDF

Although the concept of random close packing with an almost universal packing fraction of approximately 0.64 for hard spheres was introduced more than half a century ago, there are still ongoing debates. The main difficulty in searching the densest packing is that states with packing fractions beyond the glass transition at approximately 0.

View Article and Find Full Text PDF

We study male parentage and between-colony variation in sex allocation and sexual production in the desert ant Crematogaster smithi, which usually has only one singly-mated queen per nest. Colonies of this species are known to temporarily store nutrients in the large fat body of intermorphs, a specialized female caste intermediate in morphology between queens and workers. Intermorphs repackage at least part of this fat into consumable but viable male-destined eggs.

View Article and Find Full Text PDF

Using Monte Carlo simulations and free-energy calculations, we determine the phase diagram of a family of truncated hard cubes, where the shape evolves smoothly from a cube via a cuboctahedron to an octahedron. A remarkable diversity in crystal phases and close-packed structures is found, including a fully degenerate crystal structure, several plastic crystals, as well as vacancy-stabilized crystal phases, all depending sensitively on the precise particle shape. Our results illustrate the intricate relation between phase behavior and building-block shape, and can guide future experimental studies on polyhedral-shaped nanoparticles.

View Article and Find Full Text PDF

Objective: This article reports the early results in humans of hypertensive extracorporeal limb perfusion (HELP) technology in the prevention of major limb amputation due to ischemia. The short-term aim was to dilate pre-existing collateral channels, and the long-term aim was to stimulate remodeling and new collateral development by increasing endothelial shear stress and wall tension.

Methods: This study evaluated 20 patients with critical limb ischemia who were treated with HELP.

View Article and Find Full Text PDF

Objectives: The aims of the study were to test the safety and efficacy of a custom-made endovenous valve transfer stent, and delivery system in animals and humans.

Methods: The internal jugular veins of 16 sheep, weighing 45-55 kg, were used. A segment of vein with venous valve was enclosed circumferentially with a barbed stent.

View Article and Find Full Text PDF

Aims: The role of vascular endothelial growth factor (VEGF-A) in atherogenesis has remained controversial. We addressed this by comparing the effects of adenoviral VEGF-A gene transfer on atherosclerosis and lipoproteins in ApoE(-/-), LDLR(-/-), LDLR(-/-)ApoE(-/-), and LDLR(-/-)ApoB(100/100) mice.

Methods And Results: After 4 weeks on western diet, systemic adenoviral gene transfer was performed with hVEGF-A or control vectors.

View Article and Find Full Text PDF

Background: High-risk human papillomavirus (hrHPV) testing has higher sensitivity but lower specificity than cytology for cervical (pre)-cancerous lesions. Therefore, triage of hrHPV-positive women is needed in cervical cancer screening.

Methods: A cohort of 1,100 hrHPV-positive women, from a population-based screening trial (POBASCAM: n = 44,938; 29-61 years), was used to evaluate 10 triage strategies, involving testing at baseline and six months with combinations of cytology, HPV16/18 genotyping, and/or repeat hrHPV testing.

View Article and Find Full Text PDF

A remarkable social polymorphism is controlled by a single Mendelian factor in the fire ant Solenopsis invicta. A genomic element marked by the gene Gp-9 determines whether workers tolerate one or many fertile queens in their colony. Gp-9 was recently shown to be part of a supergene with two nonrecombining variants, SB and Sb.

View Article and Find Full Text PDF

Within the Netherlands a national network of biobanks has been established (Biobanking and Biomolecular Research Infrastructure-Netherlands (BBMRI-NL)) as a national node of the European BBMRI. One of the aims of BBMRI-NL is to enrich biobanks with different types of molecular and phenotype data. Here, we describe the Genome of the Netherlands (GoNL), one of the projects within BBMRI-NL.

View Article and Find Full Text PDF

Background: Attendance rates of cervical screening programs can be increased by offering HPV self-sampling to non-attendees. Acceptability, DNA yield, lavage volumes and choice of hrHPV test can influence effectiveness of the self-sampling procedures and could therefore play a role in recruiting non-attendees. To increase user-friendliness, a frequently used lavage sampler was modified.

View Article and Find Full Text PDF

We present a numerical study on the phase diagram for a simple model of Janus colloids, including ordered and disordered structures. Using a range of techniques, we generate a set of crystal structures and investigate their relative stability field in the pressure-temperature and temperature-density planes by means of free-energy calculations and thermodynamic integration schemes. We find that despite the Janus colloids' simple architecture, they form stable crystal structures with complicated bond-topologies on an underlying face-centered-cubic or hexagonal-close-packed lattice.

View Article and Find Full Text PDF

Recently, we reported the formation of crystalline monolayers consisting of octapod-shaped nanocrystals (so-called octapods) that had arranged in a square-lattice geometry through drop deposition and fast evaporation on a substrate [W. Qi, J. de Graaf, F.

View Article and Find Full Text PDF

Objective: The link between obesity and popliteal vein compression syndrome (PVCS) has been documented, but the pathophysiological mechanism is unclear. The aim of this study is to understand the pathogenesis of PVCS by assessing popliteal compartment pressures (PCP).

Methods: Twenty-three limbs (15 patients) were included.

View Article and Find Full Text PDF

We investigated the effect of size polydispersity on the crystal-fluid transition in hard-core repulsive Yukawa systems by means of Monte Carlo simulations for several state points in the Yukawa parameter space. Size polydispersity was introduced in the system only with respect to the hard particle cores; particles with different diameters had the same surface potential ψ0, but the charge per particle was not varied with packing fraction or distance. We observed a shift to higher packing fraction of the crystal-fluid transition of bulk crystals with a fixed log-normal size distribution upon increasing the polydispersity, which was more pronounced for weakly charged particles (ψ0 ≈ 23 mV) compared to more highly charged particles (ψ0 ≈ 46 mV), and also more pronounced for larger Debye screening length.

View Article and Find Full Text PDF

We study to what extent dielectric nanoparticles prefer to self-assemble into linear chains or into more compact structures. To calculate the Van der Waals (VdW) attraction between the clusters we use the Coupled Dipole Method (CDM), which treats each atom in the nanoparticle as an inducible oscillating point dipole. The VdW attraction then results from the full many-body interactions between the dipoles.

View Article and Find Full Text PDF

The self-assembly of different nanocrystals into a binary superlattice is of interest for both colloidal science and nanomaterials science. New properties may emerge from the interaction between the nanocrystal building blocks that are ordered in close contact in three dimensions. Identification of the superlattice structure including its defects is of key interest in understanding the electrical and optical properties of these systems.

View Article and Find Full Text PDF

Colloidal particles with a dielectric constant (magnetic susceptibility) mismatch with the surrounding solvent acquire a dipole moment in a homogeneous external electric (magnetic) field. The resulting dipolar interactions can lead to aggregation of the particles into string-like clusters. Recently, several methods have been developed to make these structures permanent.

View Article and Find Full Text PDF