Publications by authors named "Dijkhuizen L"

Cyclodextrin glycosyltransferase (CGTase) catalyzes three transglycosylation reactions via a double displacement mechanism involving a covalent enzyme-intermediate complex (substituted-enzyme intermediate). Characterization of the three transglycosylation reactions, however, revealed that they differ in their kinetic mechanisms. Disproportionation (cleavage of an alpha-glycosidic bond of a linear malto-oligosaccharide and transfer of one part to an acceptor substrate) proceeds according to a ping-pong mechanism.

View Article and Find Full Text PDF

The enzyme cyclodextrin glycosyltransferase is closely related to alpha-amylases but has the unique ability to produce cyclodextrins (circular alpha(1-->4)-linked glucoses) from starch. To characterize this specificity we determined a 1.8-A structure of an E257Q/D229N mutant cyclodextrin glycosyltransferase in complex with its product gamma-cyclodextrin, which reveals for the first time how cyclodextrin is competently bound.

View Article and Find Full Text PDF

Lactobacillus reuteri LB 121 cells growing on sucrose synthesize large amounts of a glucan (D-glucose) and a fructan (D-fructose) with molecular masses of 3,500 and 150 kDa, respectively. Methylation studies and 13C or 1H nuclear magnetic resonance analysis showed that the glucan has a unique structure consisting of terminal, 4-substituted, 6-substituted, and 4,6-disubstituted alpha-glucose in a molar ratio of 1.1:2.

View Article and Find Full Text PDF

Cyclodextrin glycosyltransferase (CGTase) is an enzyme of the alpha-amylase family, which uses a double displacement mechanism to process alpha-linked glucose polymers. We have determined two X-ray structures of CGTase complexes, one with an intact substrate at 2.1 A resolution, and the other with a covalently bound reaction intermediate at 1.

View Article and Find Full Text PDF

Lactobacillus sakei strain 0-1 produces an exopolysaccharide (EPS) consisting of glucose and rhamnose in a ratio of 3:2. As part of a biochemical and molecular analysis of the EPS biosynthetic pathway in L. sakei strain 0-1, we have isolated a random set of EPS-negative mutants.

View Article and Find Full Text PDF

The starch-degrading enzymes alpha-amylase and cyclodextrin glycosyltransferase (CGTase) are functionally and structurally closely related, with CGTases containing two additional domains (called D and E) compared to the three domains of alpha-amylases (A, B and C). Amino acid residue 196 (Thermoanaerobacterium thermosulfurigenes EM1 CGTase numbering) occupies a dominant position in the active-site cleft. All alpha-amylases studied have a small residue at this position (Gly, Leu, Ser, Thr or Val), in contrast to CGTases which have a more bulky aromatic residue (Tyr or Phe) at this position, which is highly conserved.

View Article and Find Full Text PDF

The product specificity and pH optimum of the thermostable cyclodextrin glycosyltransferase (CGTase) from Thermoanaerobacterium thermosulfurigenes EM1 was engineered using a combination of x-ray crystallography and site-directed mutagenesis. Previously, a crystal soaking experiment with the Bacillus circulans strain 251 beta-CGTase had revealed a maltononaose inhibitor bound to the enzyme in an extended conformation. An identical experiment with the CGTase from T.

View Article and Find Full Text PDF

Autotrophic growth of Xanthobacter flavus is dependent on the fixation of carbon dioxide via the Calvin cycle and on the oxidation of simple organic and inorganic compounds to provide the cell with energy. Maximal induction of the cbb and gap-pgk operons encoding enzymes of the Calvin cycle occurs in the absence of multicarbon substrates and the presence of methanol, formate, hydrogen, or thiosulfate. The LysR-type transcriptional regulator CbbR regulates the expression of the cbb and gap-pgk operons, but it is unknown to what cellular signal CbbR responds.

View Article and Find Full Text PDF

Tetrazolium-dye-linked alcohol dehydrogenase (TD-ADH) of Amycolatopsis methanolica could be resolved into three protein components, which have been purified. Each of the components has the ability to reconstitute TD-ADH activity when combined with the other two. Component 1 is identical to the previously characterized methanol:N,N'-dimethyl-4-nitrosoaniline oxidoreductase (MNO), a decameric protein with 50-kDa subunits, each carrying a tightly bound NADPH.

View Article and Find Full Text PDF

Oxidation of C1-C4 primary alcohols in thermotolerant Bacillus methanolicus strains is catalyzed by an NAD-dependent methanol dehydrogenase (MDH), composed of ten identical 43,000-Mr subunits. Each MDH subunit contains a tightly, but non-covalently, bound NAD(H) molecule, in addition to 1 Zn2+ and 1-2 Mg2+ ions. The NAD(H) cofactor is oxidized and reduced by formaldehyde and methanol, respectively, while it remains bound to the enzyme.

View Article and Find Full Text PDF

The ATP-dependent phosphofructokinase (ATP-PFK) of Streptomyces coelicolor A3(2) was purified to homogeneity (1,600-fold) and characterized (110 kDa, with a single type of subunit of 40 kDa); it is allosterically inhibited by phosphoenolpyruvate. Cloning of the pfk gene of S. coelicolor A3(2) and analysis of the deduced amino acid sequence (343 amino acids; 36,667 Da) revealed high similarities to the PPi-PFK enzyme from Amycolatopsis methanolica (tetramer, nonallosteric; 70%) and to the allosteric ATP-PFK enzymes from other bacteria, e.

View Article and Find Full Text PDF

Crystals of the Y195F mutant of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 were subjected to a double soaking procedure, in which they were first soaked in a solution containing the inhibitor acarbose and subsequently in a solution containing maltohexaose. The refined structure of the resulting protein-carbohydrate complex has final crystallographic and free R-factors for data in the 8-2.6 angstrom resolution range of 15.

View Article and Find Full Text PDF

The genetically well-known strain Streptomyces coelicolor A3(2) produces the pH indicator (red/blue) antibiotic actinorhodin, but not all the "blue pigment" produced by this strain is actinorhodin. When the organism was subjected to various nutrient limitations (ammonium, nitrate, phosphate, or trace elements), and also during growth cessation caused by a relatively low medium pH, blue pigment production was initiated but the pigment and its location varied. At pH 4.

View Article and Find Full Text PDF

A 4.0 kb region of Methylobacterium extorquens AM1 DNA which complements three mutants unable to convert acetyl-CoA to glyoxylate (and therefore defective in the assimilation of methanol and ethanol) has been isolated and sequenced. It contains two ORFs and the 3'-end of a third one.

View Article and Find Full Text PDF

The crystal structure of the cyclodextrin glycosyltransferase (CGTase) from the thermophilic microorganism Thermoanaerobacterium thermosulfurigenes EM1 has been elucidated at 2.3 A resolution. The final model consists of all 683 amino acid residues, two calcium ions and 343 water molecules, and has a crystallographic R-factor of 17.

View Article and Find Full Text PDF

Xanthobacter flavus, a gram-negative facultatively autotrophic bacterium, employs the Calvin cycle for the fixation of carbon dioxide. Cells grown under autotrophic growth conditions possess an Fe(2+)-dependent fructosebisphosphate (FBP) aldolase (class II) in addition to a class I FBP aldolase. By nucleotide sequencing and heterologous expression in Escherichia coli, genes encoding transketolase (EC 2.

View Article and Find Full Text PDF

The actinomycete Amycolatopsis methanolica employs a PPi-dependent phosphofructokinase (PPi-PFK) (EC 2.7.1.

View Article and Find Full Text PDF

Asp-229, Glu-257, and Asp-328 constitute the catalytic residues in cyclodextrin glycosyl transferase from Bacillus circulans strain 251. Via site-directed mutagenesis constructed D229N, E257Q, and D328N mutant proteins showed a 4,000-60,000-fold reduction of cyclization activity. A D229N/E257Q double mutant showed a 700,000-fold reduction and was crystallized for use in soaking experiments with alpha-cyclodextrin.

View Article and Find Full Text PDF

Chorismate mutase (CM) and 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase (DS) are key regulatory enzymes in L-Phe and L-Tyr biosynthesis in Amycolatopsis methanolica. At least two CM proteins, CMIa and CMIb, are required for the single chorismate mutase activity in the wild type. Component CMIa (a homodimeric protein with 16-kDa subunits) was purified to homogeneity (2,717-fold) and kinetically characterized.

View Article and Find Full Text PDF

An efficient restriction barrier for methylated DNA in the actinomycete Amycolatopsis methanolica could be avoided by using a nonmethylating Escherichia coli strain for DNA isolations. The A. methanolica prephenate dehydratase gene was cloned from a gene bank in a pMEA300-derived shuttle vector in E.

View Article and Find Full Text PDF

Amycolatopsis methanolica contains a 13.3-kb plasmid (pMEA300) that is present either as an integrated element or as an autonomously replicating plasmid. Conjugational transfer of pMEA300 results in pock formation, zones of growth inhibition that become apparent when plasmid-carrying donor cells develop in a confluent lawn of plasmid-lacking recipient cells.

View Article and Find Full Text PDF

The actinomycete Amycolatopsis methanolica contains a 13.3 kb plasmid (pMEA300), capable of enhancing the spontaneous mutation frequency of its host. Depending on the growth medium pMEA300 is not only maintained as an integrated element but can additionally be present as a multicopy, autonomously replicating plasmid.

View Article and Find Full Text PDF

Xanthobacter flavus employs two fructosebisphosphatase (FBPase)-sedoheptulosebisphosphatase (SBPase) enzymes. One of these is constitutively expressed and has a high FBPase-to-SBPase ratio. The alternative enzyme, which is encoded by cbbF, is induced during autotrophic growth.

View Article and Find Full Text PDF