Publications by authors named "Dijkhuis J"

Introduction: Proprioception encompasses the submodalities of joint position sense (JPS), kinesthesia, sense of force, and velocity. Owing to the vast mobility of the shoulder, it heavily relies on an intact sense of proprioception. Moreover, shoulder injuries are associated with a decreased sense of proprioception.

View Article and Find Full Text PDF

Hirschsprung disease (HSCR) is a major cause of chronic constipation in children. HSCR can be caused by germline mutations in RET and EDNRB. Defining causality of the mutations identified is difficult and almost exclusively based on in silico predictions.

View Article and Find Full Text PDF

Pulsed femtosecond lasers can generate acoustic pulses propagating in solids while displaying either diffraction, attenuation, nonlinearity and/or dispersion. When acoustic attenuation and diffraction are negligible, shock waves or solitons can form during propagation. Both wave types are phonon wavepackets with characteristic length scales as short as a few nanometer.

View Article and Find Full Text PDF

We experimentally investigate the self-reflectivity of intense strongly focused femtosecond laser pulses used for single-shot femtosecond laser ablation of silicon-on-insulator (SOI). We model the self-reflectivity using 2D finite-difference time-domain simulations of a single femtosecond laser pulse interacting with a submicrometer-sized time- and space-dependent plasma induced by the incident pulse itself and find excellent agreement with our experimental results. The simulation shows that the laser-induced plasma scatters the incident pulse into the guided modes of the device layer of the SOI.

View Article and Find Full Text PDF

Are excitons involved in lasing in ZnO nanowires or not? Our recently developed and experimentally tested quantum many-body theory sheds new light on this question. We measured the laser thresholds and Fabry-Pérot laser modes for three radically different excitation schemes. The thresholds, photon energies, and mode spacings can all be explained by our theory, without invoking enhanced light-matter interaction, as is needed in an earlier excitonic model.

View Article and Find Full Text PDF

An ultrafast all-optical shutter is presented, based on a simple two-color, two-photon absorption technique. For time-resolved luminescence measurements, this shutter is an interesting alternative to the optical Kerr gate. The rejection efficiency is 99%; the switching-off and switching-on speeds are limited by the pulse length only; the rejection time is determined by the crystal slab thickness; and the bandwidth spans the entire visible spectrum.

View Article and Find Full Text PDF

Objective: Voice rehabilitation after total laryngectomy is challenging. In order to investigate and understand the function of the neoglottis sophisticated measurements need to be made. During voice production, aerodynamic energy is transformed into sound energy.

View Article and Find Full Text PDF

Acoustic solitons formed during the propagation of a picosecond strain pulse in a GaAs crystal with a ZnSe/ZnMgSSe quantum well on top lead to exciton resonance energy shifts of up to 10 meV, and ultrafast frequency modulation, i.e., chirping, of the exciton transition.

View Article and Find Full Text PDF

We observe coherent interactions between an ultrashort, longitudinal acoustic soliton train and the 29-cm(-1) electronic transition in photoexcited ruby. Propagation of the strain pulses over millimeter distance through an excited zone reveals striking behavior of the induced electronic population, which has been explained by impulsive excitation of the two-level systems, combined with the nonlinear properties of the solitons in the resonant medium. This opens up new possibilities for coherent manipulation of ultrashort acoustic pulses by local electronic centers.

View Article and Find Full Text PDF

We present the first experimental investigation of ultrafast optical switching in a three-dimensional photonic crystal made of a Si-opal composite. Ultrafast (30 fs) changes in reflectivity around the photonic stop band up to 1% were measured for moderate pump power (70 microJ/cm(2)). Short-lived photoexcited carriers in silicon induce changes in the dielectric constant of Si and diminish the constructive interference inside the photonic crystal.

View Article and Find Full Text PDF

In tomato, infections by tomato mosaic virus are controlled by durable Tm-2(2) resistance. In order to gain insight into the processes underlying disease resistance and its durability, we cloned and analysed the Tm-2(2) resistance gene and the susceptible allele, tm-2. The Tm-2(20 gene was isolated by transposon tagging using a screen in which plants with a destroyed Tm-2(2) gene survive.

View Article and Find Full Text PDF

We demonstrate the development of high-amplitude picosecond strain pulses in a sapphire single crystal into an ultrafast compressional soliton train. For this purpose, large-intensity light pulses were used to excite a metal film, yielding a 2 orders of magnitude higher strain than that achieved in earlier studies. Propagation of the packets is monitored over a distance of several millimeters by means of Brillouin light scattering.

View Article and Find Full Text PDF

Infrared four-wave mixing experiments performed upon deuterated amorphous silicon layers (a-Si:D) reveal profound differences in the dynamics of Si-D stretch vibrations compared to those of analogous Si-H vibrational modes in hydrogenated amorphous silicon (a-Si:H). Remarkably, transient-grating measurements of the population decay rate of the Si-D vibrations show single-exponential decay directly into collective modes of the a-Si host, bypassing the local bending modes of the defect into which the Si-H vibrations decay. Photon-echo measurements of the vibrational dephasing suggest at low temperature contributions from TO nonequilibrium phonons and at elevated temperatures elastic phonon scattering of TA phonons.

View Article and Find Full Text PDF

We present results of the first vibrational photon-echo, transient-grating, and temperature dependent transient-bleaching experiments on a-Si:H. Using these techniques, and the infrared light of a free electron laser, the vibrational population decay and phase relaxation of the Si-H stretching mode were investigated. Careful analysis of the data indicates that the vibrational energy relaxes directly into Si-H bending modes and Si phonons, with a distribution of rates determined by the amorphous host.

View Article and Find Full Text PDF

We have compared, in an open randomized study, the effects of sodium nitroprusside (SNP) and urapidil on haemodynamic state and myocardial function and metabolism in two groups of patients undergoing elective coronary artery surgery. Sixty patients were allocated randomly to one of two groups: group SNP (n = 29) received SNP at an initial rate of 1-2 micrograms kg-1 min-1; group URA (n = 31) received one or more bolus injections of urapidil 25 mg and an i.v.

View Article and Find Full Text PDF