To protect older adults against influenza A virus (IAV) infection, innovative strategies are imperative to overcome the decrease in protective immune response with age. One approach involves the boosting of CD8+ T cells at middle age that were previously induced by natural infection. At this stage, the immune system is still fit.
View Article and Find Full Text PDFCD8 + T cells are promising targets for vaccination against influenza A virus (IAV) infection. Their induction via peptide vaccination is not trivial, because peptides are weakly immunogenic. One strategy to overcome this is by vaccination with chemically enhanced altered peptide ligands (CPLs), which have improved MHC-binding and immunogenicity.
View Article and Find Full Text PDFUniversal influenza vaccines should protect against continuously evolving and newly emerging influenza viruses. T cells may be an essential target of such vaccines, as they can clear infected cells through recognition of conserved influenza virus epitopes. We evaluated a novel T cell-inducing nucleoside-modified messenger RNA (mRNA) vaccine that encodes the conserved nucleoprotein, matrix protein 1, and polymerase basic protein 1 of an H1N1 influenza virus.
View Article and Find Full Text PDFNonpharmaceutical interventions (NPIs) to contain the SARS-CoV-2 pandemic drastically reduced human-to-human interactions, decreasing the circulation of other respiratory viruses, as well. Consequently, influenza virus circulation, which is normally responsible for 3 to 5 million hospitalizations per year globally, was significantly reduced. With the downscaling of the NPI countermeasures, there is a concern for increased influenza disease, particularly in individuals suffering from postacute effects of SARS-CoV-2 infection.
View Article and Find Full Text PDFH2N2 influenza virus, the causative agent of the 1957 "Asian flu" pandemic, has disappeared from circulation. However, H2-influenza viruses are still circulating in avian reservoirs. Combined with the waning of H2N2-specific immunity in the human population, there is a risk of reintroduction of H2N2 influenza virus.
View Article and Find Full Text PDFImproving COVID-19 intervention strategies partly relies on animal models to study SARS-CoV-2 disease and immunity. In our pursuit to establish a model for severe COVID-19, we inoculated young and adult male ferrets intranasally or intratracheally with SARS-CoV-2. Intranasal inoculation established an infection in all ferrets, with viral dissemination into the brain and gut.
View Article and Find Full Text PDFTraditional influenza vaccines primarily induce a narrow antibody response that offers no protection against heterosubtypic infections. Murine studies have shown that T cells can protect against a broad range of influenza strains. However, ferrets are a more potent model for studying immune correlates of protection in influenza infection.
View Article and Find Full Text PDFUntil universal influenza vaccines become available, pandemic preparedness should include developing classical vaccines against potential pandemic influenza subtypes. We here show that addition of SWE adjuvant, a squalene-in-water emulsion, to H7N9 split influenza vaccine clearly enhanced functional antibody responses in ferrets. These were cross-reactive against H7N9 strains from different lineages and newly emerged H7N9 variants.
View Article and Find Full Text PDFMicrobial contamination is an obstacle to widespread production of advanced biofuels and chemicals. Current practices such as process sterilization or antibiotic dosage carry excess costs or encourage the development of antibiotic resistance. We engineered Escherichia coli to assimilate melamine, a xenobiotic compound containing nitrogen.
View Article and Find Full Text PDFAvian influenza viruses continue to cross the species barrier, and if such viruses become transmissible among humans, it would pose a great threat to public health. Since its emergence in China in 2013, H7N9 has caused considerable morbidity and mortality. In the absence of a universal influenza vaccine, preparedness includes development of subtype-specific vaccines.
View Article and Find Full Text PDFCurrently licensed influenza vaccines mainly induce antibodies against highly variable epitopes. Due to antigenic drift, protection is subtype or strain-specific and regular vaccine updates are required. In case of antigenic shifts, which have caused several pandemics in the past, completely new vaccines need to be developed.
View Article and Find Full Text PDFBackground: Both the 10- and 13-valent pneumococcal conjugate vaccines (PCV10 and PCV13) induce immunological memory against Streptococcus pneumoniae infections caused by vaccine serotypes. In addition to comparing serum antibody levels, we investigated frequencies of serotype-specific plasma cells (PCs) and memory B-cells (Bmems) as potential predictors of long-term immunity around the booster vaccination at 11 months of age.
Methods: Infants were immunized with PCV10 or PCV13 at 2, 3, 4, and 11 months of age.
H2N2 Influenza A caused the Asian flu pandemic in 1957, circulated for more than 10 years and disappeared from the human population after 1968. Given that people born after 1968 are naïve to H2N2, that the virus still circulates in wild birds and that this influenza subtype has a proven pandemic track record, H2N2 is regarded as a potential pandemic threat. To prepare for an H2N2 pandemic, here we developed and tested in mice and ferrets two live attenuated influenza vaccines based on the haemagglutinins of the two different H2N2 lineages that circulated at the end of the cycle, using the well characterized A/Leningrad/134/17/57 (H2N2) master donor virus as the backbone.
View Article and Find Full Text PDFOuter membrane vesicles (OMVs) have been extensively investigated as meningococcal vaccine candidates. Among their major components are the opacity (Opa) proteins, a family of surface-exposed outer membrane proteins important for bacterial adherence and entry into host cells. Many Opa-dependent interactions are mediated through the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family of receptors.
View Article and Find Full Text PDFBackground: An improved nonavalent PorA native outer membrane vesicle vaccine was developed with intrinsic adjuvating activity due to presence of less-toxic (lpxL1) LPS. In the present study, the safety and immunogenicity of this next-generation NonaMen vaccine were evaluated following repeated vaccination in rabbits and mice.
Methods: A repeated-dose toxicology study was performed in rabbits.
Neisseria meningitidis and Bordetella pertussis are Gram-negative bacterial pathogens that can cause serious diseases in humans. N. meningitidis outer membrane vesicle (OMV) vaccines and whole cell pertussis vaccines have been successfully used in humans to control infections with these pathogens.
View Article and Find Full Text PDFThe use of detergent-extracted outer membrane vesicles (OMVs) is an established approach for development of a multivalent PorA vaccine against N. meningitidis serogroup B. Selective removal of lipopolysaccharide (LPS) decreases toxicity, but promotes aggregation and narrows the immune response.
View Article and Find Full Text PDFWild-type lipopolysaccharide (LPS) of Neisseria meningitidis normally contains six acyl chains. Penta-acylated LPS forms were generated through inactivation of the lpxL1 gene or through the expression of the Bordetella bronchiseptica pagL gene in N. meningitidis.
View Article and Find Full Text PDFHighly homologous meningococcal porin A (PorA) proteins induce protective humoral immunity against Neisseria meningitidis group B infection but with large and consistent differences in the levels of serum bactericidal activity achieved. We investigated whether a poor PorA-specific serological outcome is associated with a limited size of the specific B-cell subpopulation involved. The numbers of PorA-specific splenic plasma cells, bone marrow (BM) plasma cells, and splenic memory B cells were compared between mice that received priming and boosting with the weakly immunogenic PorA (P1.
View Article and Find Full Text PDFThe pre-clinical immunogenicity of a combination vaccine containing 13-valent pneumococcal conjugate (13vPnC) vaccine (serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F conjugated to CRM197) and nine-valent meningococcal B PorA vaccine (NonaMen; serosubtypes P1.7,16; P1.5-1,2-2; P1.
View Article and Find Full Text PDFIn the hexavalent meningococcal B OMV vaccine (HexaMen), two of the six Porin A proteins present are weakly immunogenic in mice and humans. We investigated the possibility that the lower immunogenicity of these serosubtypes (P1.7-2,4 and P1.
View Article and Find Full Text PDFPorin A (PorA), which determines the serosubtype of Neisseria meningitidis, is the main antigen of a candidate vaccine against serogroup B meningococci, which has been shown to induce high-avidity antibodies in children. We characterized the immune response of children after convalescing from meningococcal infection with a serosubtype P1.7-2,4 strain.
View Article and Find Full Text PDFA clinical phase II trial with an experimental hexavalent outer membrane vesicle (OMV) vaccine (HexaMen) containing six different porin A (PorAs) was carried out in toddlers (2-3 years) and schoolchildren (7-8 years) in The Netherlands. HexaMen exists of two OMVs each containing three different PorA types. The serum bactericidal activity (SBA) after vaccination against the six PorAs was significantly different and was higher in toddlers than in schoolchildren.
View Article and Find Full Text PDFThe hexavalent meningococcal vaccine HexaMen, containing six PorAs on two vesicles, was tested in clinical studies. Although fourfold increases in serum bactericidal activity (SBA) titers against all of the PorAs were observed, there were significant differences between PorA-specific SBA titers. SBA titers were mainly directed against one PorA from each vesicle, P1.
View Article and Find Full Text PDFAntibody specificities of pre- and postvaccination serum samples from 40 (53%) teenagers who received three doses of the Norwegian Neisseria meningitidis serogroup B vaccine (B:15:P1.7,16) during a previous trial in Iceland (Perkins et al., J.
View Article and Find Full Text PDF