A precisely balanced activity of canonical Wnt signaling is essential for a number of biological processes and its perturbation leads to developmental defects or diseases. Here, we demonstrate that alternative isoforms of the KDM2A and KDM2B lysine demethylases have the ability to negatively regulate canonical Wnt signaling. These KDM2A and KDM2B isoforms (KDM2A-SF and KDM2B-SF) lack the N-terminal demethylase domain, but they still have the ability to bind to CpG islands in promoters and to interact with their protein partners via their other functional domains.
View Article and Find Full Text PDFAberrant levels of histone modifications lead to chromatin malfunctioning and consequently to various developmental defects and human diseases. Therefore, the proteins bearing the ability to modify histones have been extensively studied and the molecular mechanisms of their action are now fairly well understood. However, little attention has been paid to naturally occurring alternative isoforms of chromatin modifying proteins and to their biological roles.
View Article and Find Full Text PDFHistone modifications have a profound impact on the chromatin structure and gene expression and their correct establishment and recognition is essential for correct cell functioning. Malfunction of histone modifying proteins is associated with developmental defects and diseases and detailed characterization of these proteins is therefore very important. The lysine specific demethylase KDM2A is a CpG island binding protein that has been studied predominantly for its ability to regulate CpG island-associated gene promoters by demethylating their H3K36me2.
View Article and Find Full Text PDF