Publications by authors named "Dihua Dai"

Self-propelled micro/nanomotors (MNMs) have shown great application potential in biomedicine, sensing, environmental remediation, etc. In the past decade, various strategies or technologies have been used to prepare and functionalize MNMs. However, the current preparation strategies of the MNMs were mainly following the pre-designed methods based on specific tasks to introduce expected functional parts on the various micro/nanocarriers, which lacks a universal platform and common features, making it difficult to apply to different application scenarios.

View Article and Find Full Text PDF

In the current data age, the fundamental research related to optical applications has been rapidly developed. Countless new-born materials equipped with distinct optical properties have been widely explored, exhibiting tremendous values in practical applications. The optical data storage technique is one of the most significant topics of the optical applications, which is considered as the prominent solution for conquering the challenge of the explosive increase in mass data, to achieve the long-life, low-energy, and super high-capacity data storage.

View Article and Find Full Text PDF

Cancer remains a severe threat to human health. To date, although various therapeutic methods, including radiotherapy (RT), chemotherapy, chemodynamic therapy (CDT), phototherapy, starvation therapy, and immunotherapy, have entered a new stage of rapid progress in cancer theranostics, their limited therapeutic effect and significant side effects need to be considered carefully. With the rapid development of nanotechnology, the marriage of nanomaterials and therapeutic methods provides the practical possibility to improve the deficiencies in cancer therapy.

View Article and Find Full Text PDF

The separation of haloalkane isomers with distillation-free strategies is one of the most challenging research topics in fundamental research and also gave high guiding values to practical industrial applications. Here, this contribution provides a previously unidentified solid supramolecular adsorption material based on a leggero pillararene derivative , which can separate 1-/2-bromoalkane isomers with near-ideal selectivity. Activated solids of with interesting amorphous and nonporous features could adsorb 1-bromopropane and 1-bromobutane from the corresponding equal volume mixtures of 1-/2-positional isomers with purities of 98.

View Article and Find Full Text PDF

The manipulation of molecular motions to construct highly ordered supramolecular architectures from chaos in the solid state is considered to be far more complex and challenging in comparison to that in solution. In this work, a bottom-up molecular assembly approach based on a newly designed skeleton-trimmed pillar[5]arene analogue, namely the permethylated leggero pillar[5]arene , is developed in the solid state. An amorphous powder of can take up certain guest vapors to form various ordered linker-containing solid-state molecular assemblies, which can be further used to construct a thermodynamically favored linker-free superstructure upon heating.

View Article and Find Full Text PDF

The fabrication of new supramolecular materials for real-time detection of analytes including ions, organic pollutants, gases, biomolecules, and drugs is of pivotal importance in industrial manufacture, clinical treatment, and environmental remediation. Incorporating fluorescent molecules with distinct aggregation-induced emission (AIE) effects into supramolecular assemblies has received much attention over the past two decades, owing to the remarkable performance of the AIE-active supramolecular materials in sensing and detection. In this minireview, we summarize the recent progress of superior detection systems on the basis of supramolecular assemblies accompanied with AIE features.

View Article and Find Full Text PDF

Controllable and on-demand delivery of agrochemicals such as plant hormones is conducive to improving agrochemicals utilization, tackling water and environmental pollution, reducing soil acidification, and realizing the goals of precision agriculture. Herein, a smart plant hormone delivery system based on metal-organic frameworks (MOFs) and supramolecular nanovalves, namely gibberellin (GA)-loaded CLT6@PCN-Q, is constructed through supramolecular host-guest interaction to regulate the growth of dicotyledonous Chinese cabbage and monocotyledonous wheat. The porous nanoscale MOF (NMOF) with a uniform diameter of 97 nm modified by quaternary ammonium (Q) stalks is served as a cargo reservoir, followed by the decoration of carboxylated leaning tower[6]arene (CLT6) based nanovalves on NMOF surfaces through host-guest interactions to fabricate CLT6@PCN-Q with a diameter of ∼101 nm and a zeta potential value of -13.

View Article and Find Full Text PDF

An efficient strategy for simultaneously detecting and removing Hg from water is vital to address mercury pollution. Herein a supramolecular assembly G⊂H with photoluminescent properties is facilely constructed through the self-assembly of a functional pillar[5]arene bearing two N,N-dimethyldithiocarbamoyl binding sites (H) and an AIE-active tetraphenylethene derivative (G). Remarkably, the fluorescence of G⊂H can be exclusively quenched by Hg among the 30 cations due to the formation of non-luminous ground state complex and only L-cysteine can restore fluorescence in the common 20 amino acids.

View Article and Find Full Text PDF

Incorporating synthetic macrocycles with unique structures and distinct conformations into conjugated macrocycle polymers (CMPs) can endow the resulting materials with great potentials in gas uptake and pollutant adsorption. Here, four CMPs (CMP-n, n=1-4) capable of reversibly capturing iodine and efficiently separating carbon dioxide are constructed from per-triflate functionalized leaning tower[6]arene (LT6-OTf) and [2]biphenyl-extended pillar[6]arene (BpP6-OTf) via Pd-catalyzed Sonogashira-Hagihara cross-coupling reaction. Intriguingly, owing to the appropriate cavity size of LT6-OTf and the numerous aromatic rings in the framework, the newly designed CMP-4 possesses an outstanding I affinity with a large uptake capacity of 208 wt % in vapor and a great removal efficiency of 94 % in aqueous solutions.

View Article and Find Full Text PDF

Grignard reagents (RMgX) are widely used in organic synthesis. However, these highly reactive compounds are supplied in inflammable solvents, which causes extra complexity in their transportation. Herein we report that Grignard reagents with linear alkyl chains can be entrapped and stabilized by the macrocyclic host pillar[5]arene while preserving their reactivity.

View Article and Find Full Text PDF

Multifunctional supramolecular nanoplatforms that integrate the advantages of different therapeutic techniques can trigger multimodal synergistic treatment of tumors, thus representing an emerging powerful tool for cancer therapeutics. : In this work, we design and fabricate a multifunctional supramolecular drug delivery platform, namely Fa-mPEG@CP5-CuS@HMSN-Py nanoparticles (FaPCH NPs), consisting of a pyridinium (Py)-modified hollow mesoporous silica nanoparticles-based drug reservoir (HMSN-Py) with high loading capacity, a layer of NIR-operable carboxylatopillar[5]arene (CP5)-functionalized CuS nanoparticles (CP5-CuS) on the surface of HMSN-Py connected through supramolecular host-guest interactions between CP5 rings and Py stalks, and another layer of folic acid (Fa)-conjugated polyethylene glycol (Fa-PEG) antennas by electrostatic interactions capable of active targeting at tumor lesions, in a controlled, highly integrated fashion for synergistic chemo-photothermal therapy. : Fa-mPEG antennas endowed the enhanced active targeting effect toward cancer cells, and CP5-CuS served as not only a quadruple-stimuli responsive nanogate for controllable drug release but also a special agent for NIR-guided photothermal therapy.

View Article and Find Full Text PDF

Fluorescent N-doped carbon dots (CN-dots) covalently functionalized with carboxylatopillar[5]arene (CP[5]), namely CCDs, have been prepared the first time. Compared with CN-dots without pillarene units, the newly constructed fluorescent CCDs could recognize Fe with high selectivity. Therefore, such CCDs can potentially serve as a promising chemical sensor for Fe ions.

View Article and Find Full Text PDF

New strategies that can simultaneously detect and remove highly toxic environmental pollutants such as heavy metal ions are still in urgent need. Herein, through supramolecular host-guest interactions, a fluorescent supramolecular polymer has been facilely constructed from a newly designed [2]biphenyl-extended pillar[6]arene equipped with two thymine sites as arms (H) and a tetraphenylethylene (TPE)-bridged bis(quaternary ammonium) guest (G) with aggregation-induced emission (AIE) property. Interestingly, supramolecular assembly-induced emission enhancement (SAIEE) could be switched on upon addition of Hg into the above-mentioned supramolecular polymer system to generate spherical-like supramolecular nanoparticles, due to the restriction of intramolecular rotation (RIR)-related AIE feature of G.

View Article and Find Full Text PDF