A variety of physical and chemical methods have been developed in research laboratories for the induction of stem cell differentiation. However, the use of exogenous chemicals and materials may limit their widespread utility in clinics. To develop a clean and precise induction approach with minimal invasion, we reported here that 1-second stimulation by a tightly focused femtosecond laser (fsL) (140 mW/μm , 200 fs) can modulate the signaling systems in human mesenchymal cells, such as intracellular calcium and reactive oxygen species.
View Article and Find Full Text PDFIn this Letter, we present a compact broadband angular dispersion compensation method for digital micromirror devices (DMDs) and ultrashort pulse lasers, which effectively extends the conventional single-wavelength compensation design to a wide wavelength range of 300 nm. First, a parametric model was developed for the dispersion compensation unit, consisting of a transmission grating and a 4f telescope sub-unit, to guide the selection of components and parameter optimization for broadband applications. In the experiments, we designed a single slit-based metrology system to measure and quantify the compensated angular dispersion of a Ti:sapphire femtosecond laser with a pulse width of 75 fs.
View Article and Find Full Text PDFWe present the modular design and characterization of a multi-modality video-rate two-photon excitation (TPE) microscope based on integrating a digital micromirror device (DMD), which functions as an ultrafast beam shaper and random-access scanner, with a pair of galvanometric scanners. The TPE microscope system realizes a suite of new imaging functionalities, including (1) multi-layer imaging with 3D programmable imaging planes, (2) DMD-based wavefront correction, and (3) multi-focus optical stimulation (up to 22.7 kHz) with simultaneous TPE imaging, all in real-time.
View Article and Find Full Text PDFIn this Letter, we present a new, to our knowledge, aberration-free 3D imaging technique based on digital micromirror device (DMD)-based two-photon microscopy and sensorless adaptive optics (AO), where 3D random-access scanning and modal wavefront correction are realized using a single DMD chip at 22.7 kHz. Specifically, the DMD is simultaneously used as a deformable mirror to modulate a distorted wavefront and a fast scanner to maneuver the laser focus in a 3D space by designed binary holograms.
View Article and Find Full Text PDF