Publications by authors named "Digweed M"

Background: Nijmegen breakage syndrome (NBS) is an autosomal-recessive chromosome instability disorder characterized by, among others, hypersensitivity to X-irradiation and an exceptionally high risk for lymphoid malignancy. The vast majority of NBS patients is homozygous for a common Slavic founder mutation, c.657del5, of the NBN gene, which is involved in the repair of DNA double-strand breaks (DSBs).

View Article and Find Full Text PDF
Article Synopsis
  • PLK4 is a crucial protein for processes such as centriole duplication and spindle assembly, with mutations linked to serious conditions like primary microcephaly and aneuploidy.
  • A study on a four-generation family found that 8 members carried a new variant and a gene deletion of PLK4, showing milder symptoms than other documented mutations.
  • The findings suggest that a reduced expression of PLK4 may enhance the survival of embryos through early cell divisions, leading to a higher rate of transmission for the deleterious alleles among offspring.
View Article and Find Full Text PDF

Background: Nibrin, as part of the NBN/MRE11/RAD50 complex, is mutated in Nijmegen breakage syndrome (NBS), which leads to impaired DNA damage response and lymphoid malignancy.

Results: Telomere length (TL) was markedly reduced in homozygous patients (and comparably so in all chromosomes) by ~40% (qPCR) and was slightly reduced in NBS heterozygotes older than 30 years (~25% in qPCR), in accordance with the respective cancer rates. Humanized cancer-free NBS mice had normal TL.

View Article and Find Full Text PDF

The genes, XRS2 in Saccharomyces cerevisiae and NBN in mammals, have little sequence identity at the amino acid level. Nevertheless, they are both found together with MRE11 and RAD50 in a highly conserved protein complex which functions in the repair of DNA double-strand breaks. Here, we have examined the evolutionary and functional relationship of these two genes by cross-complementation experiments.

View Article and Find Full Text PDF

It is well established that somatic genomic changes can influence phenotypes in cancer, but the role of adaptive changes in developmental disorders is less well understood. Here we have used next-generation sequencing approaches to identify de novo heterozygous mutations in sterile α motif domain-containing protein 9 (SAMD9, located on chromosome 7q21.2) in 8 children with a multisystem disorder termed MIRAGE syndrome that is characterized by intrauterine growth restriction (IUGR) with gonadal, adrenal, and bone marrow failure, predisposition to infections, and high mortality.

View Article and Find Full Text PDF

The vast majority of patients with Nijmegen Breakage Syndrome (NBS) are of Slavic origin and carry a deleterious deletion (c.657del5; rs587776650) in the NBN gene on chromosome 8q21. This mutation is essentially confined to Slavic populations and may thus be considered a Slavic founder mutation.

View Article and Find Full Text PDF

Over 90% of patients with Nijmegen breakage syndrome (NBS), a hereditary cancer disorder, are homoallelic for a 5 bp deletion in the NBN gene involved in the cellular response to DNA damage. This hypomorphic mutation leads to a carboxy-terminal protein fragment, p70-nibrin, with some residual function. Average age at malignancy, typically lymphoma, is 9.

View Article and Find Full Text PDF

Nibrin (NBN) is a member of a DNA repair complex together with MRE11 and RAD50. The complex is associated particularly with the repair of DNA double strand breaks and with the regulation of cell cycle check points. Hypomorphic mutation of components of the complex leads to human disorders characterised by radiosensitivity and increased tumour occurrence, particularly of the lymphatic system.

View Article and Find Full Text PDF

Mutations in the fibrillin-1 gene (FBN1) cause Marfan Syndrome (MFS), a hereditary disorder of connective tissue. The transcription of FBN1 has been reported to be driven by a short ultraconserved region (SUPR) in the 5' untranslated exon A of FBN1, but the nature of other factors involved in FBN1 gene regulation has not been clarified. In this study, we characterized the transcription factors involved in FBN1 gene regulation.

View Article and Find Full Text PDF

The autosomal recessive disorder Nijmegen breakage syndrome (NBS) is caused by mutations in the NBN gene which codes for the protein nibrin (NBS1; p95). In the majority of cases, a 5bp deletion, a founder mutation, leads to a hypomorphic 70kD protein, p70-nibrin, after alternative initiation of translation. Protein levels are of relevance for the clinical course of the disease, particularly with regard to malignancy.

View Article and Find Full Text PDF

The recessive genetic disorder Fanconi anemia (FA) is clinically characterized by congenital defects, bone marrow failure and an increased incidence of cancer. Cells derived from FA patients exhibit hypersensitivity to DNA interstrand crosslink (ICL)-inducing agents. We have earlier reported a similar cellular phenotype for human cells depleted of hSNM1B/Apollo (siRNA).

View Article and Find Full Text PDF

Nijmegen Breakage Syndrome (NBS), an autosomal recessive genetic instability syndrome, is caused by hypomorphic mutation of the NBN gene, which codes for the protein nibrin. Nibrin is an integral member of the MRE11/RAD50/NBN (MRN) complex essential for processing DNA double-strand breaks. Cardinal features of NBS are immunodeficiency and an extremely high incidence of hematological malignancies.

View Article and Find Full Text PDF

Nijmegen breakage syndrome (NBS) is a rare autosomal recessive syndrome of chromosomal instability mainly characterized by microcephaly at birth, combined immunodeficiency and predisposition to malignancies. Due to a founder mutation in the underlying NBN gene (c.657_661del5) the disease is encountered most frequently among Slavic populations.

View Article and Find Full Text PDF

Ataxia telangiectasia (AT) is an autosomal recessive disorder characterized by cerebellar degeneration, immunodeficiency, oculocutaneous telangiectasias, chromosomal instability, radiosensitivity, and cancer predisposition. The gene mutated in the patients, ATM, encodes a member of the phosphatidylinositol 3-kinase family proteins. The ATM protein has a key role in the cellular response to DNA damage.

View Article and Find Full Text PDF

Methylating agents are first-line therapeutics for gliomas and malignant melanomas. They attack DNA at various sites, and both O(6)-methylguanine and N-methylated base adducts contribute to the killing response. The mechanism of cellular defense against these agents primarily involves O(6)-methylguanine-DNA methyltransferase (MGMT) and base excision repair (BER).

View Article and Find Full Text PDF

We have previously shown that mutations in the genes encoding DNA Ligase IV (LIGIV) and RAD50, involved in DNA repair by nonhomologous-end joining (NHEJ) and homologous recombination, respectively, lead to clinical and cellular features similar to those of Nijmegen Breakage Syndrome (NBS). Very recently, a new member of the NHEJ repair pathway, NHEJ1, was discovered, and mutations in patients with features resembling NBS were described. Here we report on five patients from four families of different ethnic origin with the NBS-like phenotype.

View Article and Find Full Text PDF

Patients affected by the autosomal recessive Nijmegen Breakage Syndrome (NBS [MIM 251260]) have possibly the highest risk for developing a malignancy of all the chromosomal instability syndromes. This reflects the profound disturbance to genomic integrity and cellular homeostasis that is caused by the mutation of the essential mammalian gene, NBN. Whilst null-mutation of Nbn is lethal in the mouse, NBS patients survive due to the fact that the common human founder mutation, found in over 90% of patients, is in fact hypomorphic and leads, by alternative translation, to varying amounts of a partially functional carboxy-terminal protein fragment, p70-nibrin.

View Article and Find Full Text PDF

Background: The NBN gene codes for the protein nibrin, which is involved in the detection and repair of DNA double strand breaks (DSBs). The NBN gene is essential in mammals.

Methodology/principal Findings: We have used a conditional null mutant mouse model in a proteomics approach to identify proteins with modified expression levels after 4 Gy ionizing irradiation in the absence of nibrin in vivo.

View Article and Find Full Text PDF

The hSNM1B/Apollo protein is involved in the cellular response to DNA-damage as well as in the maintenance of telomeres during S-phase. TRF2 has been shown to interact physically with hSNM1B. As a core component of shelterin, TRF2 functions in organization and protection of telomeres.

View Article and Find Full Text PDF

The Tenth Meeting of the German Society for Research on DNA Repair was held in Berlin in September 2008. Invited presentations by Yosef Shiloh, Stanton L. Gerson, Sacha Beneke, Patrick Concannon, Jochen Dahm-Daphi, Thilo Dörk, Friedrike Eckardt-Schupp, Bernd Epe, Ian Hickson, Ulrich Hübscher, Penny Jeggo, Malik Lutzmann, Christof Niehrs, Primo Schär and Predrag Slijepcevic together with over 80 selected oral and poster presentations generated an inspiring scientific program, which documented the impressive progress of the community and defined future challenges in the field.

View Article and Find Full Text PDF

Dyskeratosis congenita is a premature aging syndrome characterized by muco-cutaneous features and a range of other abnormalities, including early greying, dental loss, osteoporosis, and malignancy. Dyskeratosis congenita cells age prematurely and have very short telomeres. Patients have mutations in genes that encode components of the telomerase complex (dyskerin, TERC, TERT, and NOP10), important in the maintenance of telomeres.

View Article and Find Full Text PDF

Human SNM1B/Apollo is involved in the cellular response to DNA-damage, however, its precise role is unknown. Recent reports have implicated hSNM1B in the protection of telomeres. We have found hSNM1B to interact with TRF2, a protein which functions in telomere protection and in an early response to ionizing radiation.

View Article and Find Full Text PDF

Background: The autosomal recessive chromosomal instability disorder Nijmegen breakage syndrome (NBS) is associated with increased risk of lymphoid malignancies and other cancers. Cells from NBS patients contain many double-stranded DNA breaks. More than 90% of NBS patients are homozygous for a founder mutation, 657del5, in the NBN gene.

View Article and Find Full Text PDF

The autosomal recessive genetic disorder Nijmegen breakage syndrome (NBS) was first described in 1981 in patients living in Nijmegen, Holland. NBS patients display a characteristic facial appearance, microcephaly and a range of symptoms including immunodeficiency, increased cancer risk and growth retardation. In addition, NBS patient cells were found to have elevated levels of chromosomal damage and to be sensitive to ionizing irradiation (IR).

View Article and Find Full Text PDF

The human genetic disorder, Nijmegen breakage syndrome (NBS), is characterised by radiosensitivity, immunodeficiency and an increased risk for cancer, particularly lymphoma. The NBS1 gene codes for a protein, nibrin, involved in the processing/repair of DNA double strand breaks and in cell cycle checkpoints. The majority of patients (>90%) are homozygous for a founder mutation.

View Article and Find Full Text PDF