Insulin promotes neuronal survival by activating a phosphatidylinositol 3-kinase (PI 3-kinase)/AKT-dependent signaling pathway and reducing caspase activation. We investigated a role for integrin-linked kinase (ILK) in insulin-mediated cell survival in cultured neurons and differentiated R28 cells. We used a serum and depolarization withdrawal model to induce apoptosis in cerebellar granule neurons and a serum withdrawal model to induce apoptosis in differentiated R28 cells.
View Article and Find Full Text PDFAfter traumatic brain injury (TBI), multiple ongoing processes contribute to worsening and spreading of the primary injury to create a secondary injury. One major process involves disrupted fluid regulation to create vascular and cytotoxic edema in the affected area. Although understanding of factors that influence edema is incomplete, the astrocyte water channel Aquaporin 4 (AQP4) has been identified as an important mediator and therefore attractive drug target for edema prevention.
View Article and Find Full Text PDFThe mechanistic target of rapamycin (mTOR) is an intracellular protein kinase that functions as an energy and nutrient sensor in the cellular microenvironment of neurons. Modulation of mTOR is vital when nutrient and energy sources become limited. Hypoxia, traumatic brain injury, cellular energy states, and growth factors all regulate the phosphorylation and total levels of mTOR in cells.
View Article and Find Full Text PDFGranulocyte-colony stimulating factor (G-CSF) has a multimodal neuroprotective profile and the cumulative preclinical data from numerous translational studies statistically confirmed the efficacy of G-CSF as a treatment option in ischemic stroke. G-CSF activates anti-apoptotic, antioxidative, and anti-inflammatory signaling pathways and stimulates angiogenesis and neurogenesis. In this review, we summarize the role of G-CSF and the corresponding signal transduction pathways regulated by G-CSF in neuroprotection and discuss its potential as a new drug for stroke treatment.
View Article and Find Full Text PDFThere are currently no federally approved neuroprotective agents to treat traumatic brain injury. Progesterone, a hydrophobic steroid hormone, has been shown in recent studies to exhibit neuroprotective effects in controlled cortical impact rat models. Akt is a protein kinase known to play a role in cell signaling pathways that reduce edema, inflammation, apoptosis, and promote cell growth in the brain.
View Article and Find Full Text PDFBackground: Insulin-like growth factor binding protein-2 (IGFBP-2) regulates the bioavailability, transportation, and localization of insulin-like growth factor-I (IGF-I), an effective neuroprotectant in animal stroke models especially when administered intranasally. Therefore, determining IGFBP-2's endogenous distribution in the normal and ischemic brain is essential in maximizing the neuroprotective potential of the intranasal IGF-I treatment approach. However, current data on IGFBP-2 is limited to mRNA and in situ hybridization studies.
View Article and Find Full Text PDFBackground Context: MicroRNAs, a class of small nonprotein-coding RNAs, are thought to control gene translation into proteins. The latter are the ultimate effectors of the biochemical cascade occurring in any physiological and pathological process. MicroRNAs have been shown to change their expression levels during injury of spinal cord in contusion rodent models.
View Article and Find Full Text PDFIschemic stroke is the leading cause of serious, long-term adult disability and is associated with sensorimotor and cognitive impairments due to neuronal degeneration. Currently, recombinant tissue plasminogen activator (rTPA) is the only FDA-approved medical therapy for treatment of patients with acute ischemic stroke. However, rTPA can only be given within 3 hours of symptom onset, and only 2% of patients are eligible.
View Article and Find Full Text PDFMethods Mol Biol
September 2013
The search for potential drugs to treat neurodegenerative diseases has been intense in the last two decades. Among many candidates, erythropoietin (EPO) was identified as a potent protectant of neurons suffering from various adverse conditions. A wide array of literature indicates that endogenous or exogenous recombinant human erythropoietin and its variants activate cell signaling that initiates survival-promoting events in neurons and neuronal cells.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is the leading cause of death and disability in children and young adults. Neuroprotective agents that may promote repair or counteract damage after injury do not currently exist. We recently reported that stimulation of the purinergic receptor subtype P2Y(1)R using 2-methylthioladenosine 5' diphosphate (2MeSADP) significantly reduced cytotoxic edema induced by photothrombosis.
View Article and Find Full Text PDFThe blood-spinal cord barrier (BSCB) is the functional equivalent of the blood-brain barrier (BBB) in the sense of providing a specialized microenvironment for the cellular constituents of the spinal cord. Even if intuitively the BSCB could be considered as the morphological extension of the BBB into the spinal cord, evidence suggests that this is not so. The BSCB shares the same principal building blocks with the BBB; nevertheless, it seems that morphological and functional differences may exist between them.
View Article and Find Full Text PDFBackground: The blood brain barrier (BBB) is impermeable to most drugs, impeding the establishment of novel neuroprotective therapies and strategies for many neurological diseases. Intranasal administration offers an alternative path for efficient drug delivery into the CNS. So far, the anatomical structures discussed to be involved in the transport of intranasally administered drugs into the CNS include the trigeminal nerve, olfactory nerve and the rostral migratory stream (RMS), but the relative contributions are debated.
View Article and Find Full Text PDFObjective: Quantitative magnetic resonance imaging (MRI) can serially and noninvasively assess the degree of injury in rat pup models of hypoxic ischemic injury (HII). It can also noninvasively monitor stem cell migration following iron oxide prelabeling. Reports have shown that neural stem cells (NSCs) may help mediate neuroprotection or stimulate neuroreparative responses in adult and neonatal models of ischemic injury.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small, non-protein-coding RNA molecules that modulate gene translation. Their expression is altered in many central nervous system (CNS) injuries suggesting a role in the cellular response to stress. Current studies in brain tissue have not yet described the cell-specific temporal miRNA expression patterns following ischemic injury.
View Article and Find Full Text PDFImportance Of The Field: Erythropoietin (EPO) is a growth hormone and cytokine that plays an important role in erythropoiesis and neuroprotection. However, EPO treatment for neurological diseases requires repeated injections or high-dose systemic administration, which may cause systemic side effects. The lack of any effective treatment of acute and chronic neurodegenerative diseases and the promising outcome by EPO in animal models in vivo demand a critical evaluation of intranasal EPO delivery to the brain as an alternative administration method.
View Article and Find Full Text PDFObjective: Prolonged human immunodeficiency virus-1 (HIV-1) infection leads to neurological debilitation, including motor dysfunction and frank dementia. Although pharmacological control of HIV infection is now possible, HIV-associated neurocognitive disorders (HAND) remain intractable. Here, we report that chronic treatment with erythropoietin (EPO) and insulin-like growth factor-I (IGF-I) protects against HIV/gp120-mediated neuronal damage in culture and in vivo.
View Article and Find Full Text PDFImportance Of The Field: Recombinant erythropoietin (rEPO) failed in a recent clinical study to protect from damages induced by ischemic stroke. The lack of acute treatments in ischemic stroke and the promising outcome in numerous preclinical studies in vivo demands a more critical evaluation of the future use of EPO as an acute treatment.
Areas Covered In This Review: The current use and administration of rhEPO and its analogs in animal models and the future use of this cytokine in the treatment of ischemic stroke.
Object: Individually, the cytokines erythropoietin (EPO) and insulin-like growth factor-I (IGF-I) have both been shown to reduce neuronal damage significantly in rodent models of cerebral ischemia. The authors have previously shown that EPO and IGF-I, when administered together, provide acute and prolonged neuroprotection in cerebrocortical cultures against N-methyl-D-aspartate-induced apoptosis. The aim of this study was to determine whether intranasally applied EPO plus IGF-I can provide acute neuroprotection in an animal stroke model and to show that intranasal administration is more efficient at delivering EPO plus IGF-I to the brain when compared with intravenous, subcutaneous, or intraperitoneal administration.
View Article and Find Full Text PDF3'-phosphoinositide-dependent protein kinase-1 (PDK-1) is a crucial serine/threonine kinase in the insulin-like growth factor-I (IGF-I)/AKT signaling pathway, but its function and localization in the nervous system has not been fully characterized. In this study, we compared the localization of PDK-1 in adult neurons and non-neuronal PC-3 cells. We showed that PC-3 cells expressed phosphorylated and nonphosphorylated PDK-1 in the cytoplasm and nucleoplasm.
View Article and Find Full Text PDFBackground: The blood brain barrier (BBB) is the first line of defence of the central nervous system (CNS) against circulating pathogens, such as HIV. The cytotoxic HIV protein, gp120, damages endothelial cells of the BBB, thereby compromising its integrity, which may lead to migration of HIV-infected cells into the brain. Fibroblast growth factor 2 (FGF2), produced primarily by astrocytes, promotes endothelial cell fitness and angiogenesis.
View Article and Find Full Text PDFBax inhibitor-1 (BI-1) is an evolutionarily conserved endoplasmic reticulum (ER) protein that suppresses cell death in both animal and plant cells. We characterized mice in which the bi-1 gene was ablated. Cells from BI-1-deficient mice, including fibroblasts, hepatocytes, and neurons, display selective hypersensitivity to apoptosis induced by ER stress agents (thapsigargin, tunicamycin, brefeldin A), but not to stimulators of mitochondrial or TNF/Fas-death receptor apoptosis pathways.
View Article and Find Full Text PDFErythropoietin (EPO) and insulin-like growth factor I (IGF-I) are cytokines that inhibit neuronal apoptosis. However, their maximal antiapoptotic effect, even at high concentrations, is observed only when neurons are pretreated for several hours before insult. Here we show that simultaneous administration of EPO and IGF-I (EPO+IGF-I) eliminates the preincubation period required to prevent N-methyl-D-aspartate (NMDA)-induced apoptosis in cultured rat cerebrocortical neurons.
View Article and Find Full Text PDFInfection with human immunodeficiency virus (HIV)-1 can lead to neurological complications that range from mild cognitive and motor impairment to HIV-associated dementia (HAD). The mechanism of brain injury and dementia remains poorly understood. Interestingly, post mortem brain specimen from HAD patients and transgenic mice expressing the viral envelope protein gp120 present with similar neuropathological signs.
View Article and Find Full Text PDFThe co-chaperone BAG1 binds and regulates 70 kDa heat shock proteins (Hsp70/Hsc70) and exhibits cytoprotective activity in cell culture models. Recently, we observed that BAG1 expression is induced during neuronal differentiation in the developing brain. However, the in vivo effects of BAG1 during development and after maturation of the central nervous system have never been examined.
View Article and Find Full Text PDF