Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden.
View Article and Find Full Text PDFMethane emissions in ruminant livestock has become a hot topic, given the pressure to reduce greenhouse gas emissions drastically in the European Union over the next 10 to 30 yr. During the 2021 United Nations Climate Change conference, countries also made collective commitments to curb methane emissions by 2050. Genetic selection for low-methane-emitting animals, particularly dairy cows, is one possible strategy for mitigation.
View Article and Find Full Text PDFIn the last decade, several countries have included feed efficiency (as residual feed intake; RFI) in their breeding goal. Recent studies showed that RFI is favorably correlated with methane emissions. Thus, selecting for lower emitting animals indirectly through RFI could be a short-term strategy in order to achieve the intended reduction set by the EU Commission (-55% for 2030).
View Article and Find Full Text PDFThe aim of the present study was to critically evaluate the potential of using NIR and Raman spectroscopy for prediction of fatty acid features and single fatty acids in salmon muscle. The study was based on 618 homogenized salmon muscle samples acquired from Atlantic salmon representing a one year-class nucleus, fed the same high fish oil feed. NIR and Raman spectra were used to make regression models for fatty acid features and single fatty acids measured by gas chromatography.
View Article and Find Full Text PDFSalmon lice are ectoparasites that threaten wild and farmed salmonids. Artificial selection of salmon for resistance to the infectious copepodid lice stage currently relies on in vivo challenge trials on thousands of salmon a year. We challenged 5750 salmon with salmon lice (Lepeophtheirus salmonis) from two distinct farmed strains of salmon in two separate trials.
View Article and Find Full Text PDFSelecting for lower methane emitting cows requires insight into the most biologically relevant phenotypes for methane emission, which are close to the breeding goal. Several methane phenotypes have been suggested over the last decade. However, the (dis)similarity of their underlying genetic architecture and correlation structures are poorly understood.
View Article and Find Full Text PDFHigh mortality during grow out in the sea is a challenge for farmed Atlantic salmon production in Norway and globally, which is partly attributed to suboptimal smolt quality. In this study, two groups of pre-smolts were put on a standard light smoltification regime with alternating 12L:12D per day for 6 weeks (Phase I), followed by 24L:0D per day for 6 weeks (Phase II); one group was 0 + smolt (EXP1) and the other 1 + smolt (EXP2). To monitor the smoltification status of the fish, 100 (EXP1) and 60 (EXP2) fish were randomly sampled per week during Phase II.
View Article and Find Full Text PDFRecording the fillet lipid percentage in European seabass is crucial to control lipid deposition as a means toward improving production efficiency and product quality. The reference method for recording lipid content is solvent lipid extraction and is the most accurate and precise method available. However, it is costly, requires sacrificing the fish and grinding the fillet sample which limits the scope of applications, for example grading of fillets, recording live fish or selective breeding of fish with own phenotypes are all limited.
View Article and Find Full Text PDFSelecting for lower methane (CH) emitting animals is one of the best approaches to reduce CH given that genetic progress is permanent and cumulative over generations. As genetic selection requires a large number of animals with records and few countries actively record CH, combining data from different countries could help to expedite accurate genetic parameters for CH traits and build a future genomic reference population. Additionally, if we want to include CH in the breeding goal, it is important to know the genetic correlations of CH traits with other economically important traits.
View Article and Find Full Text PDFBetter characterization of changes in the rumen microbiota in dairy cows over the lactation period is crucial for understanding how microbial factors may potentially be interacting with host phenotypes. In the present study, we characterized the rumen bacterial and archaeal community composition of 60 lactating Holstein dairy cows (33 multiparous and 27 primiparous), sampled twice within the same lactation with a 122 days interval. Firmicutes and Bacteroidetes dominated the rumen bacterial community and showed no difference in relative abundance between samplings.
View Article and Find Full Text PDFBackground: Product quality and production efficiency of Atlantic salmon are, to a large extent, influenced by the deposition and depletion of lipid reserves. Fillet lipid content is a heritable trait and is unfavourably correlated with growth, thus genetic management of fillet lipid content is needed for sustained genetic progress in these two traits. The laboratory-based reference method for recording fillet lipid content is highly accurate and precise but, at the same time, expensive, time-consuming, and destructive.
View Article and Find Full Text PDFIn dairy cattle, selecting for lower methane-emitting animals is one of the new challenges of this decade. However, genetic selection requires a large number of animals with records to get accurate estimated breeding values (EBV). Given that CH records are scarce, the use of information on routinely recorded and highly correlated traits with CH has been suggested to increase the accuracy of genomic EBV (GEBV) through multitrait (genomic) prediction.
View Article and Find Full Text PDFOver the last decade, extensive research effort has been placed on developing methane mitigation strategies in ruminants. Many disciplines on animal science disciplines have been involved, including nutrition and physiology, microbiology and genetic selection. To date, few of the suggested strategies have been implemented because: (1) methane emissions currently have no direct or indirect economic value for farmers, with no financial incentive to change practices and (2) most strategies have limited, or no, long-term effects.
View Article and Find Full Text PDFResidual feed intake (RFI) is a measure of feed efficiency in dairy cattle. This study modeled phenotypic RFI of first- and second-parity Holstein and Jersey dairy cows within 9 lactation segments (consecutive segments of 4 wk each) covering the first 36 lactation weeks. We aimed to evaluate physical activity and daily methane production as additional energy sinks in the estimation of RFI, to examine the correlations of RFI among the first 36 wk of lactation (WOL), and to evaluate whether parities and breeds show similar results.
View Article and Find Full Text PDFReducing methane emissions from livestock production is of great importance for the sustainable management of the Earth's environment. Rumen microbiota play an important role in producing biogenic methane. However, knowledge of how host genetics influences variation in ruminal microbiota and their joint effects on methane emission is limited.
View Article and Find Full Text PDFSubclinical metabolic disorders such as ketosis cause substantial economic losses for dairy farmers in addition to the serious welfare issues they pose for dairy cows. Major hurdles in genetic improvement against metabolic disorders such as ketosis include difficulties in large-scale phenotype recording and low heritability of traits. Milk concentrations of ketone bodies, such as acetone and β-hydroxybutyric acid (BHB), might be useful indicators to select cows for low susceptibility to ketosis.
View Article and Find Full Text PDFThere is considerable interest in improving feed utilization of dairy cattle while limiting losses to the environment (i.e., greenhouse gases, GHG).
View Article and Find Full Text PDFPartners in Expert Working Group WG2 of the COST Action METHAGENE have used several methods for measuring methane output by individual dairy cattle under various environmental conditions. Methods included respiration chambers, the sulphur hexafluoride (SF) tracer technique, breath sampling during milking or feeding, the GreenFeed system, and the laser methane detector. The aim of the current study was to review and compare the suitability of methods for large-scale measurements of methane output by individual animals, which may be combined with other databases for genetic evaluations.
View Article and Find Full Text PDFBackground: Fatty acids (FA) in bovine milk derive through body mobilization, de novo synthesis or from the feed via the blood stream. To be able to digest feedstuff, the cow depends on its rumen microbiome. The relative abundance of the microbes has been shown to differ between cows.
View Article and Find Full Text PDFOrganic dairy cows in Denmark are often kept indoors during the winter and outside at least part time in the summer. Consequently, their diet changes by the season. We hypothesized that grazing might affect enteric CH emissions due to changes in the nutrition, maintenance, and activity of the cows, and they might differentially respond to these factors.
View Article and Find Full Text PDFCattle and other ruminants produce large quantities of methane (~110 million metric tonnes per annum), which is a potent greenhouse gas affecting global climate change. Methane (CH4) is a natural by-product of gastro-enteric microbial fermentation of feedstuffs in the rumen and contributes to 6% of total CH4 emissions from anthropogenic-related sources. The extent to which the host genome and rumen microbiome influence CH4 emission is not yet well known.
View Article and Find Full Text PDFAs long as large-scale recording of expensive-to-measure and labor-consuming traits, such as dry matter intake (DMI) and CH production (CHP), continues to be challenging in practical conditions, alternative traits that are already routinely recorded in dairy herds should be investigated. An ideal indicator trait must, in addition to expressing genetic variation, have a strong correlation with the trait of interest. Our aim was to estimate individual level and phenotypic correlations between rumination time (RT), CHP, and DMI to determine if RT could be used as an indicator trait for CHP and DMI.
View Article and Find Full Text PDFIt may be possible for dairy farms to improve profitability and reduce environmental impacts by selecting for higher feed efficiency and lower methane (CH4) emission traits. It remains to be clarified how CH4 emission and feed efficiency traits are related to each other, which will require direct and accurate measurements of both of these traits in large numbers of animals under the conditions in which they are expected to perform. The ranking of animals for feed efficiency and CH4 emission traits can differ depending upon the type and duration of measurement used, the trait definitions and calculations used, the period in lactation examined and the production system, as well as interactions among these factors.
View Article and Find Full Text PDFIn the present study, we hypothesized that the rumen bacterial and archaeal communities would change significantly over the transition period of dairy cows, mainly as an adaptation to the classical use of low-grain prepartum and high-grain postpartum diets. Bacterial 16S rRNA gene amplicon sequencing of rumen samples from 10 primiparous Holstein dairy cows revealed no changes over the transition period in relative abundance of genera such as Ruminococcus, Butyrivibrio, Clostridium, Coprococcus, and Pseudobutyrivibrio. However, other dominant genus-level taxa, such as Prevotella, unclassified Ruminococcaceae, and unclassified Succinivibrionaceae, showed distinct changes in relative abundance from the prepartum to the postpartum period.
View Article and Find Full Text PDFDairy cows experience dramatic changes in host physiology from gestation to lactation period and dietary switch from high-forage prepartum diet to high-concentrate postpartum diet over the transition period (parturition +/- three weeks). Understanding the community structure and activity of the rumen microbiota and its associative patterns over the transition period may provide insight for e.g.
View Article and Find Full Text PDF