Publications by authors named "Difeng Yin"

We report an electro-optic isolator fabricated on thin-film lithium niobate by photolithography-assisted chemo-mechanical etching that shows an isolation of 39.50 dB and an overall fiber-to-fiber loss of 2.6 dB.

View Article and Find Full Text PDF

Materials synthesis in a microfluidic environment enables the flexible and controllable production of various types of nanostructures which are of great potential in the fields of chemistry, environmental science, bioengineering, and medicine. Here, we demonstrate on-chip simultaneous continuous-flow synthesis and spectrum diagnosis of zinc oxide (ZnO) nanomaterials using a femtosecond-fabricated three-dimensional (3D) microchannel reactor integrated with an array of optical fiber probes. The microchannel reactor including 3D concentration gradient generators followed by 3D micromixing units provides high-efficiency manipulation of reactants with different concentrations as well as parallel reaction dynamics in an autonomous manner.

View Article and Find Full Text PDF

Integrated thin-film lithium niobate (LN) electro-optic (EO) modulators of broad bandwidth, low insertion loss, low cost and high production rate are essential elements in contemporary interconnection industries and disruptive applications. Here, we demonstrated the design and fabrication of a high performance thin-film LN EO modulator using photolithography assisted chemo-mechanical etching (PLACE) technology. Our device shows a 3-dB bandwidth over 50 GHz, along with a comparable low half wave voltage-length product of 2.

View Article and Find Full Text PDF

Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk materials, underpinning the lightwave communication and large-scale sensing. Subject to the highly confined mode in the micro-to-nanoscale and moderate propagation loss, gain and power scaling in such integrated devices prove to be more challenging compared to their bulk counterparts. In this work, a thin cladding layer of tantalum pentoxide (TaO) is employed in the erbium doped lithium niobate (LN) waveguide amplifier fabricated on the thin film lithium niobate on insulator (LNOI) wafer by the photolithography assisted chemo-mechanical etching (PLACE) technique.

View Article and Find Full Text PDF

We demonstrate an on-chip -doped lithium niobate (LN) microdisk laser. The intrinsic quality factors of the fabricated -doped LN microdisk resonator are measured up to 3.79×10 at a 976 nm wavelength and 1.

View Article and Find Full Text PDF

We demonstrate monolithic integration of an electro-optically (EO) tunable microring laser on lithium niobate on insulator (LNOI) platform. The device is fabricated by photolithography assisted chemo-mechanical etching, and the pump laser is evanescently coupled into the erbium (${\rm{E}}{{\rm{r}}^{3 +}}$)-doped lithium niobate (LN) microring laser using an undoped LN waveguide mounted above the microring. The quality factor of the LN microring resonator is measured as high as ${1.

View Article and Find Full Text PDF

We demonstrate a microfluidic mixer of high mixing efficiency in fused silica substrate using femtosecond laser-induced wet etching and hydroxide-catalysis bonding method. The micromixer has a three-dimensional geometry, enabling efficient mixing based on Baker's transformation principle. The cross-sectional area of the fabricated micromixer was 0.

View Article and Find Full Text PDF