Publications by authors named "Difazio S"

Article Synopsis
  • Adaptation to abiotic stress, like salinity, is crucial for the survival of perennial trees, as it impacts their growth and productivity.
  • The study focused on Populus tremula x alba, where researchers used laser capture microdissection to analyze the effects of salinity on specific leaf cells, revealing intricate molecular responses.
  • Results indicated that salinity triggers protein and metabolite changes in vascular cells, affecting nitrogen metabolism and driving the accumulation of essential storage proteins, highlighting the role of photorespiration in helping trees adapt to stress.
View Article and Find Full Text PDF
Article Synopsis
  • The study explores how water-deficit stress affects the metabolism of different plant cell types, specifically looking at leaf palisade and vascular cells in poplar trees.
  • Researchers used advanced techniques like MALDI-MSI to observe unique metabolic changes in these cell types during various stages of water stress and recovery.
  • Findings revealed that palisade cells accumulate flavonoids and phenolic metabolites, while vascular cells focus on sugars and fatty acids, emphasizing the importance of cell-type-specific responses in improving plant resilience to environmental stresses.
View Article and Find Full Text PDF

Community genetics seeks to understand the mechanisms by which natural genetic variation in heritable host phenotypes can encompass assemblages of organisms such as bacteria, fungi, and many animals including arthropods. Prior studies that focused on plant genotypes have been unable to identify genes controlling community composition, a necessary step to predict ecosystem structure and function as underlying genes shift within plant populations. We surveyed arthropods within an association population of Populus trichocarpa in three common gardens to discover plant genes that contributed to arthropod community composition.

View Article and Find Full Text PDF
Article Synopsis
  • Transitions in sex chromosome systems can change how sex is determined genetically, but research has mostly focused on a few examples.
  • The study examined the change from XY to ZW sex determination in willow trees (Salix exigua), finding that both the Z and W chromosomes originated from the ancestral Y chromosome.
  • The new Z chromosome retains some masculine traits from the Y, while the W has lost those traits and gained feminizing factors, suggesting that the evolution of sex chromosomes might be more adaptable than previously thought.
View Article and Find Full Text PDF
Article Synopsis
  • The study examines the genus Salix and Populus within the Salicaceae family to better understand the reasons behind their species diversity and the complexities in their evolutionary history.
  • Researchers utilized targeted gene sequencing to analyze 787 gene regions, revealing significant phylogenetic conflicts and confirming both some known and new subgeneric relationships within Salix.
  • The findings highlight instances of hybridization and rapid diversification, particularly in the Vetrix and Chamaetia subclades, suggesting that both ancient and recent hybridization events have significantly influenced the diversity of these genera.
View Article and Find Full Text PDF

The Salicaceae, including Populus and Salix, are dioecious perennials that utilize different sex determination systems. This family provides a useful system to better understand the evolution of dioecy and sex chromosomes. Here, a rare monoecious genotype of Salix purpurea, 94003, was self- and cross-pollinated and progeny sex ratios were used to test hypotheses on possible mechanisms of sex determination.

View Article and Find Full Text PDF

Fine-scale meiotic recombination is fundamental to the outcome of natural and artificial selection. Here, dense genetic mapping and haplotype reconstruction were used to estimate recombination for a full factorial Populus trichocarpa cross of 7 males and 7 females. Genomes of the resulting 49 full-sib families (N = 829 offspring) were resequenced, and high-fidelity biallelic SNP/INDELs and pedigree information were used to ascertain allelic phase and impute progeny genotypes to recover gametic haplotypes.

View Article and Find Full Text PDF

Background: Salicaceae species have diverse sex determination systems and frequent sex chromosome turnovers. However, compared with poplars, the diversity of sex determination in willows is poorly understood, and little is known about the evolutionary forces driving their turnover. Here, we characterized the sex determination in two Salix species, S.

View Article and Find Full Text PDF

The rapid analysis of biopolymers including lignin and sugars in lignocellulosic biomass cell walls is essential for the analysis of the large sample populations needed for identifying heritable genetic variation in biomass feedstocks for biofuels and bioproducts. In this study, we reported the analysis of cell wall lignin content, syringyl/guaiacyl (S/G) ratio, as well as glucose and xylose content by high-throughput pyrolysis-molecular beam mass spectrometry (py-MBMS) for >3,600 samples derived from hundreds of accessions of from natural populations, as well as pedigrees constructed from 14 parents (7 × 7). Partial Least Squares (PLS) regression models were built from the samples of known sugar composition previously determined by hydrolysis followed by nuclear magnetic resonance (NMR) analysis.

View Article and Find Full Text PDF

Premise: The evolution of sex chromosomes is driven by sexual dimorphism, yet it can be challenging to document sexually dimorphic traits in dioecious plant species. At the genetic level, sexual dimorphism can be identified through sequence variation between females and males associated with sexually antagonistic traits and different fitness optima. This study aims to examine sexual dimorphism for 26 traits in three populations of Salix purpurea (a diversity panel and F and F populations) and determine the effect of the traits on biomass yield, a key trait in Salix bioenergy crops across multiple years, locations, and under manipulated growth conditions.

View Article and Find Full Text PDF

Sex dimorphism and gene expression were studied in developing catkins in 159 F individuals from the bioenergy crop Salix purpurea, and potential mechanisms and pathways for regulating sex development were explored. Differential expression, eQTL, bisulfite sequencing, and network analysis were used to characterize sex dimorphism, detect candidate master regulator genes, and identify pathways through which the sex determination region (SDR) may mediate sex dimorphism. Eleven genes are presented as candidates for master regulators of sex, supported by gene expression and network analyses.

View Article and Find Full Text PDF

(black willow) is a widespread tree that hosts many species of polylectic hymenopterans and oligolectic bees of the genus . The early flowering of makes it an important nutritive resource for arthropods emerging from hibernation. However, since is dioecious, not all insect visits will lead to successful pollination.

View Article and Find Full Text PDF

Background: Pyrolysis-molecular beam mass spectrometry (py-MBMS) analysis of a pedigree of Populus trichocarpa was performed to study the phenotypic plasticity and heritability of lignin content and lignin monomer composition. Instrumental and microspatial environmental variability were observed in the spectral features and corrected to reveal underlying genetic variance of biomass composition.

Results: Lignin-derived ions (including m/z 124, 154, 168, 194, 210 and others) were highly impacted by microspatial environmental variation which demonstrates phenotypic plasticity of lignin composition in Populus trichocarpa biomass.

View Article and Find Full Text PDF

The development of non-recombining sex chromosomes has radical effects on the evolution of discrete sexes and sexual dimorphism. Although dioecy is rare in plants, sex chromosomes have evolved repeatedly throughout the diversification of angiosperms, and many of these sex chromosomes are relatively young compared to those found in vertebrates. In this study, we designed and used a sequence capture array to identify a novel sex-linked region (SLR) in Salix nigra, a basal species in the willow clade, and demonstrated that this species has XY heterogamety.

View Article and Find Full Text PDF

It is increasingly realized that homoploid hybrid speciation (HHS), which involves no change in chromosome number, is an important mechanism of speciation. HHS will likely increase in frequency as ecological and geographical barriers between species are continuing to be disrupted by human activities. HHS requires the establishment of reproductive isolation between a hybrid and its parents, but the underlying genes and genetic mechanisms remain largely unknown.

View Article and Find Full Text PDF

Premise: The family Salicaceae has proved taxonomically challenging, especially in the genus , which is speciose and features frequent hybridization and polyploidy. Past efforts to reconstruct the phylogeny with molecular barcodes have failed to resolve the species relationships of many sections of the genus.

Methods: We used the wealth of sequence data in the family to design sequence capture probes to target regions of 300-1200 bp of exonic regions of 972 genes.

View Article and Find Full Text PDF

Dioecy, the presence of separate sexes on distinct individuals, has evolved repeatedly in multiple plant lineages. However, the specific mechanisms by which sex systems evolve and their commonalities among plant species remain poorly understood. With both XY and ZW sex systems, the family Salicaceae provides a system to uncover the evolutionary forces driving sex chromosome turnovers.

View Article and Find Full Text PDF

To understand the genetic mechanisms underlying wood anatomical and morphological traits in , we used 869 unrelated genotypes from a common garden in Clatskanie, Oregon that were previously collected from across the distribution range in western North America. Using GEMMA mixed model analysis, we tested for the association of 25 phenotypic traits and nine multitrait combinations with 6.741 million SNPs covering the entire genome.

View Article and Find Full Text PDF

The ages and sizes of a sex-determination region (SDR) are difficult to determine in non-model species. Due to the lack of recombination and enrichment of repetitive elements in SDRs, the quality of assembly with short sequencing reads is universally low. Unique features present in the SDRs help provide clues about how SDRs are established and how they evolve in the absence of recombination.

View Article and Find Full Text PDF

Plants employ a diverse set of defense mechanisms to mediate interactions with insects and fungi. These relationships can leave lasting impacts on host plant genome structure such as rapid expansion of gene families through tandem duplication. These genomic signatures provide important clues about the complexities of plant/biotic stress interactions and evolution.

View Article and Find Full Text PDF

The presence of thousands of independent origins of dioecy in angiosperms provides a unique opportunity to address the parallel evolution of the molecular pathways underlying unisexual flowers. Recent progress towards identifying sex determination genes has identified hormone response pathways, mainly associated with cytokinin and ethylene response pathways, as having been recruited multiple times independently to control unisexuality. Moreover, transcriptomics has begun to identify commonalities among intermediate sections of signal transduction pathways.

View Article and Find Full Text PDF

Background: Sex chromosomes have arisen independently in a wide variety of species, yet they share common characteristics, including the presence of suppressed recombination surrounding sex determination loci. Mammalian sex chromosomes contain multiple palindromic repeats across the non-recombining region that show sequence conservation through gene conversion and contain genes that are crucial for sexual reproduction. In plants, it is not clear if palindromic repeats play a role in maintaining sequence conservation in the absence of homologous recombination.

View Article and Find Full Text PDF

Populus euphratica is well adapted to extreme desert environments and is an important model species for elucidating the mechanisms of abiotic stress resistance in trees. The current assembly of P. euphratica genome is highly fragmented with many gaps and errors, thereby impeding downstream applications.

View Article and Find Full Text PDF

Understanding the regulatory network controlling cell wall biosynthesis is of great interest in , both because of its status as a model woody perennial and its importance for lignocellulosic products. We searched for genes with putatively unknown roles in regulating cell wall biosynthesis using an extended network-based Lines of Evidence (LOE) pipeline to combine multiple omics data sets in , including gene coexpression, gene comethylation, population level pairwise SNP correlations, and two distinct SNP-metabolite Genome Wide Association Study (GWAS) layers. By incorporating validation, ranking, and filtering approaches we produced a list of nine high priority gene candidates for involvement in the regulation of cell wall biosynthesis.

View Article and Find Full Text PDF

Phylogenetic analysis is complicated by interspecific gene flow and the presence of shared ancestral polymorphisms, particularly those maintained by balancing selection. In this study, we aimed to examine the prevalence of these factors during the diversification of Populus, a model tree genus in the Northern Hemisphere. We constructed phylogenetic trees of 29 Populus taxa using 80 individuals based on re-sequenced genomes.

View Article and Find Full Text PDF