Warming and exposure to emerging global pollutants, such as per- and polyfluoroalkyl substances (PFAS), are significant stressors in the aquatic ecosystem. However, little is known about the warming effect on the bioaccumulation of PFAS in aquatic organisms. In this study, the pelagic organisms and zebrafish, and the benthic organism were exposed to 13 PFAS in a sediment-water system with a known amount of each PFAS at different temperatures (16, 20, and 24 °C).
View Article and Find Full Text PDFPerfluoroalkyl acids (PFAAs) are proteinophilic pollutants. We hypothesized that fractionation of PFAAs may occur along a food chain. To testify this hypothesis, we investigated the bioconcentration, bioaccumulation, and fractionation of 11 kinds of PFAAs (C-F = 3-11) along an aquatic food chain consisting of D.
View Article and Find Full Text PDFThe mixed pollution of the global water environment by perfluoroalkyl acids (PFAAs) and their ecological risks have aroused widespread concern. However, the relationship between the combined toxicity of PFAA mixtures and their accumulation in aquatic organisms is not well understood in the context of global warming. Here, we study the bioconcentration and combined toxicity of three PFAA mixtures (PFOA, PFDA, PFDoA) to Daphnia magna (D.
View Article and Find Full Text PDFPerfluoroalkyl acids (PFAAs) are a class of emerging pollutants. However, the bioconcentration and tissue distribution of shorter chain PFAAs in aquatic animals are not well understood. Here, we investigated the effects of perfluorinated carbon chain length of PFAAs and protein content of tissues on the bioconcentration and tissue distribution of both shorter chain PFAAs (linear C-F = 3-6) and longer chain PFAAs (linear C-F = 7-11) in zebrafish.
View Article and Find Full Text PDFShort- and long-chain perfluoroalkyl acids (PFAAs), ubiquitously coexisting in the environment, can be accumulated in organisms by binding with proteins and their binding affinities generally increase with their chain length. Therefore, we hypothesized that long-chain PFAAs will affect the bioconcentration of short-chain PFAAs in organisms. To testify this hypothesis, the bioconcentration and tissue distribution of five short-chain PFAAs (linear C-F = 3-6) were investigated in zebrafish in the absence and presence of six long-chain PFAAs (linear C-F = 7-11).
View Article and Find Full Text PDF