Publications by authors named "Dietzel A"

Article Synopsis
  • Filamentous microorganisms, like fungi, have complex structures made up of branched hyphae, and accurately measuring the mechanical properties of these hyphae is essential for understanding their behavior.
  • This study introduces a novel microfluidic system that measures the bending stiffness of individual fungal hyphae more accurately by positioning the samples away from interfering walls, resulting in better measurement outcomes.
  • The findings indicate that the bending stiffness of certain hyphae is significantly higher than previously recorded, while the Young's Modulus, describing the cell wall elasticity, shows similar values across different fungal types, aiding future research on how cultivation conditions affect hyphal properties and overall fungus behavior.
View Article and Find Full Text PDF
Article Synopsis
  • Pharmaceutical formulations are increasingly utilizing drug and carrier nanoparticles, with their size and uniformity crucial for optimizing bioavailability and pharmacological effects.
  • A novel microfluidic antisolvent precipitation device was created using two-photon-polymerization, allowing for better mixing and measurement of nanoparticles during production.
  • This device enables real-time monitoring of nanoparticle size and dynamics, opening up opportunities for improved control over nanoparticle production processes.
View Article and Find Full Text PDF

Microbioreactors increase information output in biopharmaceutical screening applications because they can be operated in parallel without consuming large quantities of the pharmaceutical formulations being tested. A capillary wave microbioreactor (cwMBR) has recently been reported, allowing cost-efficient parallelization in an array that can be activated for mixing as a whole. Although impedance spectroscopy can directly distinguish between dead and viable cells, the monitoring of cells in suspension within bioreactors is challenging because the signal is influenced by the potentially varying properties of the culture medium.

View Article and Find Full Text PDF

Due to the overuse of antibiotics, the number of multidrug-resistant pathogen bacteria is rising in recent years posing a serious threat to human health. One promising alternative for treatment is the application of phage therapy using highly selective bacteriophages. Because of their selectivity, individual screens called phagograms for each patient are required to select phages from a phage library.

View Article and Find Full Text PDF

Future industrial applications of microparticle fractionation with deterministic lateral displacement (DLD) devices are hindered by exceedingly low throughput rates. To enable the necessary high-volume flows, high flow velocities as well as high aspect ratios in DLD devices have to be investigated. However, no experimental studies have yet been conducted on the fractionation of bi-disperse suspensions containing particles below 10 µm with DLD at a Reynolds number (Re) above 60.

View Article and Find Full Text PDF

This paper describes the design, fabrication, integration, characterization, and demonstration of a novel flexible double-sided curvature sensor array for use in soft robotics. The paper explores the performance and potential applications of a piezoresistive sensor array consisting of four gold strain gauges on a flexible polyimide (PI) substrate arranged in a Wheatstone bridge configuration. Multiple sensor strips were arranged like the fingers of a hand.

View Article and Find Full Text PDF

The nasal mucosa, being accessible and highly vascularized, opens up new opportunities for the systemic administration of drugs. However, there are several protective functions like the mucociliary clearance, a physiological barrier which represents is a difficult obstacle for drug candidates to overcome. For this reason, effective testing procedures are required in the preclinical phase of pharmaceutical development.

View Article and Find Full Text PDF

In recent years, there has been a significant increase in the registration of drugs for nasal application with systemic effects. Previous preclinical in vitro test systems for transmucosal drug absorption studies have mostly been based on primary cells or on tumor cell lines such as RPMI 2650, but both approaches have disadvantages. Therefore, the aim of this study was to establish and characterize a novel immortalized nasal epithelial cell line as the basis for an improved 3D cell culture model of the nasal mucosa.

View Article and Find Full Text PDF

Purpose: Morphological changes to the optic nerve head (ONH) can be detected at the early stages of glaucoma. Three-dimensional imaging and analysis may aid in the diagnosis. Light field (LF) fundus cameras can generate three-dimensional (3D) images of optic disc topography from a single shot and are less susceptible to motion artifacts.

View Article and Find Full Text PDF

An inadvertent consequence of pesticide use is aquatic pesticide pollution, which has prompted the implementation of mitigation measures in many countries. Water quality monitoring programs are an important tool to evaluate the efficacy of these mitigation measures. However, large interannual variability of pesticide losses makes it challenging to detect significant improvements in water quality and to attribute these improvements to the application of specific mitigation measures.

View Article and Find Full Text PDF

Aquatic pesticide pollution is an important issue worldwide. Countries rely on monitoring programs to observe water bodies quality and on models to evaluate pesticide risks for entire stream networks. Measurements are typically sparse and discontinuous which lead to issues in quantifying pesticide transport at the catchment scale.

View Article and Find Full Text PDF
Article Synopsis
  • Observing the curing reaction of epoxy resins is crucial for ensuring quality in fibre composite production, with electrical impedance spectra being a key monitoring method.
  • Impedance spectra reveal physical changes during curing: early stages are dominated by ionic conductivity and electrode polarization, while dipole relaxation takes over later; evaluating across an entire frequency spectrum is more effective than focusing on a single frequency.
  • A proposed frequency-dependent model simplifies the interpretation of complex raw spectral data, achieving a relative error of only 2.3% with five parameters, while indicating the need for changing key indicators as the curing process progresses.
View Article and Find Full Text PDF

Electrical impedance spectroscopy (EIS) is widely recognized as a powerful tool in biomedical research. For example, it allows detection and monitoring of diseases, measuring of cell density in bioreactors, and characterizing the permeability of tight junctions in barrier-forming tissue models. However, with single-channel measurement systems, only integral information is obtained without spatial resolution.

View Article and Find Full Text PDF

Numerous synthetic techniques for the fabrication of porous metal electrodes were developed in recent decades. A very promising and facile route is the 3D printing of structures, which can be designed directly on the computer first. However, the current techniques allow structures to be printed with a resolution down to 20 µm, which is still quite rough regarding tuning the pore distribution and diameter of electrode materials for potential applications.

View Article and Find Full Text PDF

Antibody gold nanoparticle conjugates as recognition elements are essential for the overall performance of lateral flow assays. When immobilizing antibodies on gold nanoparticles, the challenge is to prevent aggregation and to ensure that the antibodies are correctly oriented so that they remain functional and their paratopes remain accessible. There are many methods available, and it is difficult to decide which one to use.

View Article and Find Full Text PDF

The synthesis of nanoparticles in microchannels promises the advantages of small size, uniform shape and narrow size distribution. However, only with insights into the mixing processes can the most suitable designs and operating conditions be systematically determined. Coaxial lamination mixers (CLM) built by 2-photon polymerization can operate long-term stable nanoparticle precipitation without fouling issues.

View Article and Find Full Text PDF

The ability to measure the degree of cure of epoxy resins is an important prerequisite for making manufacturing processes for fibre-reinforced plastics controllable. Since a number of physical properties change during the curing reaction of epoxy resins, a wide variety of measurement methods exist. In this article, different methods for cure monitoring of epoxy resins are applied to a room-temperature curing epoxy resin and then directly compared.

View Article and Find Full Text PDF

Structural health monitoring systems for composite laminates using guided ultrasonic waves become more versatile with the structural integration of sensors. However, the data generated within these sensors have to be transmitted from the laminate to the outside, where polyimide-based printed circuit boards play a major role. This study investigates, to what extent integrated polyimide inlays with applied sensor bodies influence the guided ultrasonic wave propagation in glass fiber-reinforced polymer specimens.

View Article and Find Full Text PDF

An integrable sensor inlay for monitoring crack initiation and growth inside bondlines of structural carbon fiber-reinforced plastic (CFRP) components is presented. The sensing structures are sandwiched between crack-stopping poly(vinyliden fluoride) (PVDF) and a thin reinforcing polyetherimide (PEI) layer. Good adhesion at all interfaces of the sensor system and to the CFRP material is crucial, as weak bonds can counteract the desired crack-stopping functionality.

View Article and Find Full Text PDF

Structural health monitoring of lightweight constructions made of composite materials can be performed using guided ultrasonic waves. If modern fiber metal laminates are used, this requires integrated sensors that can record the inner displacement oscillations caused by the propagating guided ultrasonic waves. Therefore, we developed a robust MEMS vibrometer that can be integrated while maintaining the structural and functional compliance of the laminate.

View Article and Find Full Text PDF

One key application of organ-on-chip systems is the examination of drug transport and absorption through native cell barriers such the blood-brain barrier. To overcome previous hurdles related to the transferability of existing static cell cultivation protocols and polydimethylsiloxane (PDMS) as the construction material, a chip platform with key innovations for practical use in drug-permeation testing is presented. First, the design allows for the transfer of barrier-forming tissue into the microfluidic system after cells have been seeded on porous polymer or Si3N4 membranes.

View Article and Find Full Text PDF

Microbioreactors (MBRs) with a volume below 1 mL are promising alternatives to established cultivation platforms such as shake flasks, lab-scale bioreactors and microtiter plates. Their main advantages are simple automatization and parallelization and the saving of expensive media components and test substances. These advantages are particularly pronounced in small-scale MBRs with a volume below 10 µL.

View Article and Find Full Text PDF

Microfluidic mixers promise unique conditions for the controlled and continuous preparation of nanoparticles by antisolvent precipitation. Nanoparticles may enable encapsulation of drug or mRNA molecules in the form of carrier nanoparticles or can provide higher bioavailability in the form of drug nanoparticles. The ultimate goal in microfluidic approaches is the production of nanoparticles with narrow size distributions while avoiding contaminations and achieving sufficiently high throughput.

View Article and Find Full Text PDF

Systems-in-foil with multi-sensor arrays require extensive wiring with large numbers of data lines. This prevents scalability of the arrays and thus limits the applications. To enable multiplexing and thus reducing the external connections down to few digital data links and a power supply, active circuits in the form of ASICs must be integrated into the foils.

View Article and Find Full Text PDF