Conventional synthetic polymers typically are highly resistant to microbial degradation, which is beneficial for their intended purpose but highly detrimental when such polymers get lost into the environment. Polystyrene is one of the most widespread of such polymers, but knowledge about its biological degradability is scarce. In this study, we investigated the ability of the polymer-degrading brown-rot fungus Gloeophyllum trabeum to attack polystyrene via Fenton chemistry driven by the redox-cycling of quinones.
View Article and Find Full Text PDFFEMS Microbiol Lett
June 2016
Wood-rotting fungi possess remarkably diverse extracellular oxidation mechanisms, including enzymes, such as laccase and peroxidases, and Fenton chemistry. The ability to biologically drive Fenton chemistry by the redox cycling of quinones has previously been reported to be present in both ecologically diverging main groups of wood-rotting basidiomycetes. Therefore, we investigated whether it is even more widespread among fungal organisms.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
November 2015
Synthetic polymers, commonly named plastics, are among the most widespread anthropogenic pollutants of marine, limnic and terrestrial ecosystems. Disruptive effects of plastics are known to threaten wildlife and exert effects on natural food webs, but signs for and knowledge on plastic biodegradation are limited. Microorganisms are the most promising candidates for an eventual bioremediation of environmental plastics.
View Article and Find Full Text PDF