Publications by authors named "Dietmar J Kappes"

In T cells, stromal interaction molecule (STIM) and Orai are dispensable for conventional T cell development, but critical for activation and differentiation. This review focuses on novel STIM-dependent mechanisms for control of Ca signals during T cell activation and its impact on mitochondrial function and transcriptional activation for control of T cell differentiation and function. We highlight areas that require further work including the roles of plasma membrane Ca ATPase (PMCA) and partner of STIM1 (POST) in controlling Orai function.

View Article and Find Full Text PDF

The transcription factor ThPOK (encoded by Zbtb7b) is well known for its role as a master regulator of CD4 lineage commitment in the thymus. Here, we report an unexpected and critical role of ThPOK as a multifaceted regulator of myeloid lineage commitment, differentiation and maturation. Using reporter and knockout mouse models combined with single-cell RNA-sequencing, progenitor transfer and colony assays, we show that ThPOK controls monocyte-dendritic cell versus granulocyte lineage production during homeostatic differentiation, and serves as a brake for neutrophil maturation in granulocyte lineage-specified cells through transcriptional regulation of lineage-specific transcription factors and RNA via altered messenger RNA splicing to reprogram intron retention.

View Article and Find Full Text PDF

How multipotential cells initiate distinct gene expression programs in response to external cues to instruct cell fate choice remains a fundamental question in biology. Establishment of CD4 and CD8 T cell fates during thymocyte development is critically regulated by T cell receptor (TCR) signals, which in turn control expression of the CD4-determining transcription factor ThPOK. However, the mechanism whereby differential TCR signals are molecularly interpreted to promote or antagonize ThPOK expression, and thereby CD4 versus CD8 lineage fates remains unknown.

View Article and Find Full Text PDF

The transcription factor ThPOK (encoded by the Zbtb7b gene) controls homeostasis and differentiation of mature helper T cells, while opposing their differentiation to CD4 intraepithelial lymphocytes (IELs) in the intestinal mucosa. Thus CD4 IEL differentiation requires ThPOK transcriptional repression via reactivation of the ThPOK transcriptional silencer element (Sil). In the present study, we describe a new autoregulatory loop whereby ThPOK binds to the Sil to maintain its own long-term expression in CD4 T cells.

View Article and Find Full Text PDF

Advances in genetics and sequencing have identified a plethora of disease-associated and disease-causing genetic alterations. To determine causality between genetics and disease, accurate models for molecular dissection are required; however, the rapid expansion of transcriptional populations identified through single-cell analyses presents a major challenge for accurate comparisons between mutant and wild-type cells. Here we generate mouse models of human severe congenital neutropenia (SCN) using patient-derived mutations in the GFI1 transcription factor.

View Article and Find Full Text PDF

While the zinc finger transcription factors EGR1, EGR2, and EGR3 are recognized as critical for T-cell function, the role of EGR4 remains unstudied. Here, we show that EGR4 is rapidly upregulated upon TCR engagement, serving as a critical "brake" on T-cell activation. Hence, TCR engagement of EGR4 T cells leads to enhanced Ca responses, driving sustained NFAT activation and hyperproliferation.

View Article and Find Full Text PDF

During αβ T cell development, T cell antigen receptor (TCR) engagement transduces biochemical signals through a protein-protein interaction (PPI) network that dictates dichotomous cell fate decisions. It remains unclear how signal specificity is communicated, instructing either positive selection to advance cell differentiation or death by negative selection. Early signal discrimination might occur by PPI signatures differing qualitatively (customized, unique PPI combinations for each signal), quantitatively (graded amounts of a single PPI series), or kinetically (speed of PPI pathway progression).

View Article and Find Full Text PDF

ThPOK is a "master regulator" of T lymphocyte lineage choice, whose presence or absence is sufficient to dictate development to the CD4 or CD8 lineages, respectively. Induction of ThPOK is transcriptionally regulated, via a lineage-specific silencer element, SilThPOK. Here, we take advantage of the available genome sequence data as well as site-specific gene targeting technology, to evaluate the functional conservation of ThPOK regulation across mammalian evolution, and assess the importance of motif grammar (order and orientation of TF binding sites) on SilThPOK function in vivo.

View Article and Find Full Text PDF

Unlike αβ-T lineage cells, where the role of ligand in intrathymic selection is well established, the role of ligand in the development of γδ-T cells remains controversial. Here we provide evidence for the role of a bona fide selecting ligand in shaping the γδ-T cell-receptor (TCR) repertoire. Reactivity of the γδ-TCR with the major histocompatibility complex (MHC) Class Ib ligands, H2-T10/22, is critically dependent upon the EGYEL motif in the complementarity determining region 3 (CDR3) of TCRδ.

View Article and Find Full Text PDF

Most ribosomal proteins (RP) are regarded as essential, static components that contribute only to ribosome biogenesis and protein synthesis. However, emerging evidence suggests that RNA-binding RP are dynamic and can influence cellular processes by performing "extraribosomal," regulatory functions involving binding to select critical target mRNAs. We report here that the RP, Rpl22, and its highly homologous paralog Rpl22-Like1 (Rpl22l1 or Like1) play critical, extraribosomal roles in embryogenesis.

View Article and Find Full Text PDF

Antigen presentation to the T-cell receptor leads to sustained cytosolic Ca elevation, which is critical for T-cell activation. We previously showed that in activated T cells, Ca clearance is inhibited by the endoplasmic reticulum Ca sensor stromal interacting molecule 1 (STIM1) via association with the plasma membrane Ca/ATPase 4 (PMCA4) Ca pump. Having further observed that expression of both proteins is increased in activated T cells, the current study focused on mechanisms regulating both up-regulation of STIM1 and PMCA4 and assessing how this up-regulation contributes to control of Ca clearance.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic screens are used to find important genes related to immune cell development, using zebrafish as an effective model due to their genetic similarities to humans.
  • A transposon system was employed to create mutations in the zebrafish genome, allowing researchers to tag and identify cells expressing disrupted genes, leading to the discovery of 12 lines with green fluorescent protein (GFP) expressing hematopoietic tissues.
  • Further analysis revealed specific gene disruptions that impede T cell development, with two genes, agtpbp1 and eps15L1, identified as crucial for proper T cell functioning.
View Article and Find Full Text PDF

The transcription factor T-helper-inducing POZ/Krueppel-like factor (ThPOK, encoded by the Zbtb7b gene) plays widespread and critical roles in T-cell development, particularly as the master regulator of CD4 commitment. Here we show that mice expressing a constitutive T-cell-specific ThPOK transgene (ThPOK(const) mice) develop thymic lymphomas. These tumors resemble human T-cell acute lymphoblastic leukemia (T-ALL), in that they predominantly exhibit activating Notch1 mutations.

View Article and Find Full Text PDF

Gradations in extracellular regulated kinase (ERK) signaling have been implicated in essentially every developmental checkpoint or differentiation process encountered by lymphocytes. Yet, despite intensive effort, the molecular basis by which differences in ERK activation specify alternative cell fates remains poorly understood. We report here that differential ERK signaling controls lymphoid-fate specification through an alternative mode of action.

View Article and Find Full Text PDF

Numerous studies indicate that γδ T cell receptor (γδTCR) expression alone does not reliably mark commitment of early thymic progenitors to the γδ fate. This raises the possibility that the γδTCR is unable to intrinsically specify fate and instead requires additional environmental factors, including TCR-ligand engagement. We use single cell progenitor assays to reveal that ligand acts instructionally to direct adoption of the γδ fate.

View Article and Find Full Text PDF

It remains controversial whether the highly homologous ribosomal protein (RP) paralogs found in lower eukaryotes have distinct functions and this has not been explored in vertebrates. Here we demonstrate that despite ubiquitous expression, the RP paralogs, Rpl22 and Rpl22-like1 (Rpl22l1) play essential, distinct, and antagonistic roles in hematopoietic development. Knockdown of Rpl22 in zebrafish embryos selectively blocks the development of T lineage progenitors after they have seeded the thymus.

View Article and Find Full Text PDF

MHC class II-expressing thymocytes and thymic epithelial cells can mediate CD4 T-cell selection resulting in functionally distinct thymocyte-selected CD4 (T-CD4) and epithelial-selected CD4 (E-CD4) T cells, respectively. However, little is known about how T-cell receptor (TCR) signaling influences the development of these two CD4 T-cell subsets. To study TCR signaling for T-CD4 T-cell development, we used a GFP reporter system of Nur77 in which GFP intensity directly correlates with TCR signaling strength.

View Article and Find Full Text PDF

The role of the zinc finger transcription factor ThPOK (T-helper-inducing POZ-Kruppel-like factor) in promoting commitment of αβ T cells to the CD4 lineage is now well established. New results indicate that ThPOK is also important for the development and/or acquisition of effector functions by other T cell subsets, including several not marked by CD4 expression, i.e.

View Article and Find Full Text PDF

The alphabeta TCR has recently been suggested to function as an anisotropic mechanosensor during immune surveillance, converting mechanical energy into a biochemical signal upon specific peptide/MHC ligation of the alphabeta clonotype. The heterodimeric CD3epsilongamma and CD3epsilondelta subunits, each composed of two Ig-like ectodomains, form unique side-to-side hydrophobic interfaces involving their paired G-strands, rigid connectors to their respective transmembrane segments. Those dimers are laterally disposed relative to the alphabeta heterodimer within the TCR complex.

View Article and Find Full Text PDF

T lymphocytes develop into two major lineages characterized by expression of the alphabeta and gammadelta T cell receptor (TCR) heterodimers. Within each major lineage, further specialization occurs, resulting in distinct subsets that differ in TCR specificity, phenotype and functional attributes. Thus, in the murine thymus, two distinct subsets of mature (CD24-) gammadelta cells have been identified, that is NK1.

View Article and Find Full Text PDF