Herein we report an expeditive C-3 vinylation of unprotected 3-iodoindazoles under microwave irradiation. Ten C-5 substituted 3-vinylindazole derivatives, nine of them novel, were synthesized through this method, which proceeds in moderate to excellent yields starting from C-5 substituted 3-iodoindazole derivatives. In all cases, the C-3 vinylated derivative was the only isolated product.
View Article and Find Full Text PDFThe quality of wine is mainly determined during the alcoholic fermentation that gradually transforms the grape juice into wine. Along this process the yeast goes through several stressful stages which can affect its fermentative ability and industrial performance, affecting wine quality. Based on their actual application on industrial winemaking, commercial Saccharomyces cerevisiae strains (EC1118, QA23, VIN7 and VL3) were used.
View Article and Find Full Text PDFThe monoclonal antibody WF6 competes with acetylcholine and alpha-bungarotoxin (alpha-BGT) for binding to the Torpedo nicotinic acetylcholine receptor (nAChR) alpha 1 subunit. Using synthetic peptides corresponding to the complete Torpedo nAChR alpha 1 subunit, we previously mapped a continuous epitope recognized by WF6, and the prototope for alpha-BGT, to the sequence segment alpha 1(181-200). Single amino acid substitution analogs have been used as an initial approach to determine the critical amino acids for WF6 and alpha-BGT binding.
View Article and Find Full Text PDFThe sequence segment 181-200 of the Torpedo nicotinic acetylcholine receptor (nAChR) alpha subunit forms a binding site for alpha-bungarotoxin (alpha-BTX) [e.g., see Conti-Tronconi, B.
View Article and Find Full Text PDFIn the nicotinic acetylcholine receptors (AChRs), the sequence segment surrounding two invariant vicinal cysteinyl residues at positions 192 and 193 of the alpha subunit contains important structural component(s) of the binding site for acetylcholine and high molecular weight cholinergic antagonists, like snake alpha-neurotoxins. At least a second sequence region contributes to the formation of the cholinergic site. Studying the binding of alpha-bungarotoxin and three different monoclonal antibodies, able to compete with alpha-neurotoxins and cholinergic ligands, to a panel of synthetic peptides as representative structural elements of the AChR from Torpedo, we recently identified the sequence segments alpha 181-200 and alpha 55-74 as contributing to form the cholinergic site (Conti-Tronconi et al.
View Article and Find Full Text PDFEmploying a panel of synthetic peptides as representative structural elements of the nicotinic acetylcholine receptor from Torpedo electric organ, we recently identified three sequence regions of the receptor (alpha 55-74, alpha 134-153 and alpha 181-200) serving as subsites for the binding of high molecular weight antagonists of acetylcholine (Conti-Tronconi et al. 1990). The relative binding affinities to these subsites of alpha-bungarotoxin and three competitive antibodies varied in a ligand-specific fashion.
View Article and Find Full Text PDFPrevious studies by several laboratories have identified a narrow sequence region of the nicotinic acetylcholine receptor (AChR) alpha subunit, flanking the cysteinyl residues at positions 192 and 193, as containing major elements of, if not all, the binding site for cholinergic ligands. In the present study, we used a panel of synthetic peptides as representative structural elements of the AChR to investigate whether additional segments of the AChR sequences are able to bind alpha-bungarotoxin (alpha-BTX) and several alpha-BTX-competitive monoclonal antibodies (mAbs). The mAbs used (WF6, WF5, and W2) were raised against native Torpedo AChR, specifically recognize the alpha subunit, and bind to AChR is inhibited by all cholinergic ligands.
View Article and Find Full Text PDF