Publications by authors named "Dieter Schwarz"

Several epidemiological studies associate certain CYP1A1 genotypes, alone or in combination, with an increased risk of estrogen-related cancers. Previously we demonstrated that metabolic activation of estrogens by CYP1A1 is a genotype-dependent reaction with the CYP1A1.2 (Ile462Val) variant being the most efficient catalyst (Kisselev et al.

View Article and Find Full Text PDF

This review goes back to spectral studies [see Hildebrandt et al., 1968]. The findings of apparent absolute spectra of two interconvertible forms of microsomal mixed function oxidases are looked back on to recall whether their impact sustained scrutiny or are rather remembered as of sentimental value only.

View Article and Find Full Text PDF

To answer the question whether the most common allelic variants of human CYP1A1, namely CYP1A1.1 (wild type), CYP1A1.2 (Ile462Val), and CYP1A1.

View Article and Find Full Text PDF

Several epidemiologic studies associate certain CYP1A1 genotypes, alone or in combination, with an increased risk of estrogen-related cancers. To answer the question of whether genotype-dependent activation of estrogens by CYP1A1 could be the underlying mechanism, we studied the hydroxylation activity of the most common allelic variants of human CYP1A1 towards both endogenously occurring estrogens, 17beta-estradiol (E2) and estrone (E1). We expressed and purified CYP1A1.

View Article and Find Full Text PDF

Epidemiological studies suggest that food rich in quercetin and naringin may protect against certain types of lung cancer, and that genotype dependent inhibition of cytochrome P450 1A1 (CYP1A1)-mediated bioactivation of procarcinogens could be the underlying mechanism. We studied the inhibitory effects of quercetin and naringin on the terminal bioactivation step of benzo[a]pyrene (B[a]P), a member of the major class of lung carcinogens. This reaction (epoxidation of (+/-)-trans-7,8-dihydro-7,8-dihydroxy-B[a]P to the ultimate carcinogenic product, (+/-)-B[a]P-r-7,t-8-dihydrodiol-t-9,10-epoxide (diolepoxide 2)) was examined using three of the most common allelic variants of human CYP1A1, namely wild-type CYP1A1.

View Article and Find Full Text PDF

Human cytochrome P450 1A1 (CYP1A1) and human NADPH-cytochrome P450 reductase were expressed and purified from Spodoptera frugiperda insect cells. A reconstituted enzymatically active system metabolized polyunsaturated fatty acids such as arachidonic (AA) and eicosapentaenoic acid (EPA). CYP1A1 was an AA hydroxylase which oxidizes this substrate at a rate of 650+/-10 pmol/min/nmol CYP1A1, with over 90% of metabolites accounted for by hydroxylation products and with 19-OH-AA as major product.

View Article and Find Full Text PDF

Commercially available St. John's wort (Hypericum perforatum) preparations and some of their main constituents (hypericin, pseudohypericin, hyperforin, rutin, and quercetin) were examined for their potential to inhibit carcinogen activation by human cytochrome P450 1A1 (CYP1A1). We used a reconstituted system consisting of purified human CYP1A1, purified human NADPH-cytochrome P450 reductase, and dilaurylphosphatidylcholine as lipid component.

View Article and Find Full Text PDF

Previously, inhibitors of CYP1A1 were rated as candidate chemopreventive agents against cancer mainly according to their effects on the 7-ethoxyresorufin O-deethylation (EROD) of diagnostic probe substrates. Surprisingly, several polyphenols including resveratrol, formerly identified as potent inhibitors by the EROD assay, exhibited no or weak inhibition of procarcinogen activation. We compared the effects of 11 representative natural polyphenols, which normally occur in food, on different activities of CYP1A1, namely epoxidation of 7,8-dihydrodiol-benzo[a]pyrene, the terminal step in the activation leading to the ultimate carcinogenic diolepoxides, hydroxylation of benzo[a]pyrene, and EROD.

View Article and Find Full Text PDF

Human cytochrome P4501A1 (CYP1A1) is one of the key enzymes in the bioactivation of environmental pollutants such as benzo[a]pyrene (B[a]P) and other polycyclic aromatic hydrocarbons. To evaluate the effect of membrane properties and distinct phospholipids on the activity of human CYP1A1 purified insect cell-expressed human CYP1A1 and of human NADPH-P450 reductase were reconstituted into phospholipid vesicle membranes. Conversion rates of up to 36 pmol x min(-1) x pmol(-1) CYP1A1 of the enantiomeric promutagens (-)- and (+)-trans-7,8-dihydroxy-7,8-dihydro-B[a]P (7,8-diol) to the genotoxic diolepoxides were achieved.

View Article and Find Full Text PDF