During development, amniote vertebrate embryos transform from a flat sheet into a three-dimensional cylindrical form through ventral folding of the lateral sides of the sheet (the lateral plate [LP]) and their fusion in the ventral midline. Using a chick embryo slice system, we find that the flat stage is actually a poised balance of opposing dorsal and ventral elastic bending tensions. An intact extracellular matrix (ECM) is required for generating tension, as localized digestion of ECM dissipates tension, while removal of endoderm or ectoderm layers has no significant effect.
View Article and Find Full Text PDFFibronectin (FN) is an extracellular matrix glycoprotein essential for the development and function of major vertebrate organ systems. Mutations in FN result in an autosomal dominant skeletal dysplasia termed corner fracture-type spondylometaphyseal dysplasia (SMDCF). The precise pathomechanisms through which mutant FN induces impaired skeletal development remain elusive.
View Article and Find Full Text PDFBackground: Fibrosis is a pathological scarring process characterized by persistent myofibroblast activation with excessive accumulation of extracellular matrix (ECM). Fibrotic disorders represent an increasing burden of disease-associated morbidity and mortality worldwide for which there are limited therapeutic options. Reversing fibrosis requires the elimination of myofibroblasts, remodeling of the ECM, and regeneration of functional tissue.
View Article and Find Full Text PDFFibronectin (FN) serves as a critical organizer of extracellular matrix networks in two principal isoforms, the plasma FN and the cellular FN. While FN's pivotal role in various organ systems, including the blood vasculature, is well-established, its contribution to the development of the skeletal system is much less explored. Furthermore, the pathomechanisms of spondyloepiphyseal dysplasia caused by FN mutations remain elusive.
View Article and Find Full Text PDFFibronectin (FN) is a ubiquitous extracellular matrix glycoprotein essential for the development of various tissues. Mutations in FN cause a unique form of spondylometaphyseal dysplasia, emphasizing its importance in cartilage and bone development. However, the relevance and functional role of FN during skeletal development has remained elusive.
View Article and Find Full Text PDFIntroduction And Purpose: Mouse mesenchymal stem cells (MSCs) provide a resourceful tool to study physiological and pathological aspects of adipogenesis. Bone marrow-derived MSCs (BM-MSCs) and adipose tissue-derived MSCs (ASCs) are widely used for these studies. Since there is a wide spectrum of methods available, the purpose is to provide a focused hands-on procedural guide for isolation and characterization of murine BM-MSCs and ASCs and to effectively differentiate them into adipocytes.
View Article and Find Full Text PDFBackground: A series of incurable cardiovascular disorders arise due to improper formation of elastin during development. Supravalvular aortic stenosis (SVAS), resulting from a haploinsufficiency of , is caused by improper stress sensing by medial vascular smooth muscle cells, leading to progressive luminal occlusion and heart failure. SVAS remains incurable, as current therapies do not address the root issue of defective elastin.
View Article and Find Full Text PDFMicrofibril-associated glycoprotein 4 (MFAP4) is a 36-kDa extracellular matrix glycoprotein with critical roles in organ fibrosis, chronic obstructive pulmonary disease, and cardiovascular disorders, including aortic aneurysms. MFAP4 multimerises and interacts with elastogenic proteins, including fibrillin-1 and tropoelastin, and with cells via integrins. Structural details of MFAP4 and its potential interfaces for these interactions are unknown.
View Article and Find Full Text PDFFibronectin serves as a platform to guide and facilitate deposition of collagen and fibrillin microfibrils. During development of fibrotic diseases, altered fibronectin deposition in the extracellular matrix (ECM) is generally an early event. After this, dysregulated organization of fibrillins and fibrillar collagens occurs.
View Article and Find Full Text PDFRationale: Pathogenic (P)/likely pathogenic (LP) SMAD3 variants cause Loeys-Dietz syndrome type 3 (LDS3), which is characterized by arterial aneurysms, dissections and tortuosity throughout the vascular system combined with osteoarthritis.
Objectives: Investigate the impact of P/LP SMAD3 variants with functional tests on patient-derived fibroblasts and vascular smooth muscle cells (VSMCs), to optimize interpretation of SMAD3 variants.
Methods: A retrospective analysis on clinical data from individuals with a P/LP SMAD3 variant and functional analyses on SMAD3 patient-derived VSMCs and SMAD3 patient-derived fibroblasts, differentiated into myofibroblasts.
Background: Marfan syndrome (MFS) is a genetic disorder caused by mutations in fibrillin-1 and is characterized by thoracic aortic aneurysms and other complications. Previous studies revealed sexual dimorphisms in formation of aortic aneurysm in patients with MFS. The current study aimed to investigate the combined role of a high-fat diet (HFD) and biological sex in aortic disease using the mgR/mgR MFS mouse model.
View Article and Find Full Text PDFFibrillin-1 is an extracellular matrix protein that assembles into microfibrils which provide critical functions in large blood vessels and other tissues. Mutations in the fibrillin-1 gene are associated with cardiovascular, ocular, and skeletal abnormalities in Marfan syndrome. Here, we reveal that fibrillin-1 is critical for angiogenesis which is compromised by a typical Marfan mutation.
View Article and Find Full Text PDFFibrillin-1 is a pivotal structural component of the kidney's glomerulus and peritubular tissue. Mutations in the fibrillin-1 gene result in Marfan syndrome (MFS), an autosomal dominant disease of the connective tissue. Although the kidney is not considered a classically affected organ in MFS, several case reports describe glomerular disease in patients.
View Article and Find Full Text PDFFibrillin-1 is an extracellular matrix protein that assembles into microfibrils that provide critical functions in large blood vessels and other tissues. Mutations in the fibrillin-1 gene are associated with cardiovascular, ocular, and skeletal abnormalities in Marfan syndrome. Fibrillin-1 is a component of the wall of large arteries but has been poorly described in other vessels.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
August 2022
Gene mutations in the extracellular matrix protein fibrillin-1 cause connective tissue disorders including Marfan syndrome (MFS) with clinical symptoms in the cardiovascular, skeletal, and ocular systems. Patients with MFS also exhibit alterations in adipose tissues, which in some individuals leads to lipodystrophy, whereas in others to obesity. We have recently demonstrated that fibrillin-1 regulates adipose tissue homeostasis.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
August 2022
The extracellular matrix is an intricate and essential network of proteins and nonproteinaceous components that provide a conducive microenvironment for cells to regulate cell function, differentiation, and survival. Fibronectin is one key component in the extracellular matrix that participates in determining cell fate and function crucial for normal vertebrate development. Fibronectin undergoes time-dependent expression patterns during stem cell differentiation, providing a unique stem cell niche.
View Article and Find Full Text PDFThoracic aortic aneurysms (TAA) in Marfan syndrome, caused by fibrillin-1 mutations, are characterized by elevated cytokines and fragmentated elastic laminae in the aortic wall. This study explored whether and how specific fibrillin-1-regulated miRNAs mediate inflammatory cytokine expression and elastic laminae degradation in TAA. miRNA expression profiling at early and late TAA stages using a severe Marfan mouse model (Fbn1) revealed a spectrum of differentially regulated miRNAs.
View Article and Find Full Text PDFThe embryonic extracellular matrix (ECM) undergoes transition to mature ECM as development progresses, yet few mechanisms ensuring ECM proteostasis during this period are known. Fibrillin microfibrils are macromolecular ECM complexes serving structural and regulatory roles. In mice, and encoding the major microfibrillar components, are strongly expressed during embryogenesis, but fibrillin-1 is the major component observed in adult tissue microfibrils.
View Article and Find Full Text PDFMost chronic wounds are characterized by varying degrees of hypoxia and low partial pressures of O that may favor the development of the wound and/or delay healing. However, most studies regarding extracellular matrix remodeling in wound healing are conducted under normoxic conditions. Here, we investigated the consequences of hypoxia on elastic network formation, both in a mouse model of pressure-induced hypoxic ulcer and in human primary fibroblasts cultured under hypoxic conditions.
View Article and Find Full Text PDFA 4 month-old, 14.8 kg, male Newfoundland dog was presented for cardiovascular evaluation following detection of a heart murmur. Echocardiography revealed enlargement of the sinuses of Valsalva and marked, diffuse dilation of the ascending aorta (annuloaortic ectasia, AAE), with mild/equivocal subaortic stenosis (SAS).
View Article and Find Full Text PDFThe formation of elastic fibers is active only in the perinatal period. How elastogenesis is developmentally regulated is not fully understood. Citrullination is a unique form of post-translational modification catalyzed by peptidylarginine deiminases (PADs), including PAD1-4.
View Article and Find Full Text PDFMarfan syndrome (MFS) is an autosomal dominant disease affecting cardiovascular, ocular and skeletal systems. It is caused by mutations in the fibrillin-1 (FBN1) gene, leading to structural defects of connective tissue and increased activation of TGF-β. Angiotensin II (ang-II) is involved in TGF-β activity and in bone mass regulation.
View Article and Find Full Text PDFFibrillin-1 is an extracellular matrix protein which contains one conserved RGD integrin-binding motif. It constitutes the backbone of microfibrils in many tissues, and mutations in fibrillin-1 cause various connective tissue disorders. Although it is well established that fibrillin-1 interacts with several RGD-dependent integrins, very little is known about the associated intracellular signaling pathways.
View Article and Find Full Text PDF