From early 2020, a high demand for SARS-CoV-2 tests was driven by several testing indications, including asymptomatic cases, resulting in the massive roll-out of PCR assays to combat the pandemic. Considering the dynamic of viral shedding during the course of infection, the demand to report cycle threshold (Ct) values rapidly emerged. As Ct values can be affected by a number of factors, we considered that harmonization of semi-quantitative PCR results across laboratories would avoid potential divergent interpretations, particularly in the absence of clinical or serological information.
View Article and Find Full Text PDFMethod: Aim of this study was to automatically select a suitable pseudo-reference brain region for the accurate, non-invasive quantification of neuroinflammation in a rat brain using dynamic [F]DPA-714 PET imaging.
Procedures: A supervised clustering analysis approach considering three kinetic classes (SVCA3) was used to select an appropriate pseudo-reference brain region. This pseudo-reference region was determined by selecting only brain regions with low specific tracer uptake (SVCA3) or by taking into account all brain regions and weighting each brain region with the corresponding fraction of low specific binding (SVCA3).
Microglia are potential targets for therapeutic intervention in neurological and neurodegenerative diseases affecting the central nervous system. In order to assess the efficacy of therapies aimed to reduce the tissue damaging activities of microglia and/or to promote the protective potential of these cells, suitable pre-clinical and clinical tools for the analysis of microglia activities and dynamics are required. The aim of this work was to identify new translational markers of the anti-inflammatory / protective state of microglia for the development of novel PET tracers.
View Article and Find Full Text PDFThe P2X receptor plays a significant role in microglial activation, and as a potential drug target, the P2X receptor is also an interesting target in positron emission tomography. The current study aimed at the development and evaluation of a potent tracer targeting the P2X receptor, to which end four adamantanyl benzamide analogues with high affinity for the human P2X receptor were labelled with carbon-11. All four analogues could be obtained in excellent radiochemical yield and high radiochemical purity and molar activity, and all analogues entered the rat brain.
View Article and Find Full Text PDFPurpose: Activation of the innate immune system plays a significant role in pathologies of the central nervous system (CNS). In order to follow disease progression and evaluate effectiveness of potential treatments involved in neuroinflammation, it is important to track neuroinflammatory markers in vivo longitudinally. The translocator protein (TSPO) is used as a target to image neuroinflammation as its expression is upregulated in reactive glial cells during CNS pathologies.
View Article and Find Full Text PDFUnlabelled: The P2X7 receptor (P2X7R) orchestrates neuroinflammation, and this is the basis for an increased interest in the development of antagonists inhibiting P2X7R function in the brain. This study provides the preclinical evaluation of (11)C-JNJ-54173717, a PET tracer for P2X7R in both rats and nonhuman primates.
Methods: (11)C-JNJ-54173717 is a high-affinity radiotracer for the human P2X7R (hP2X7R).
Purpose: [(18)F]DPA-714 is a radiotracer with high affinity for TSPO. We have characterized the kinetics of [(18)F]DPA-714 in rat brain and evaluated its ability to quantify TSPO expression with PET using a neuroinflammation model induced by unilateral intracerebral injection of lipopolysaccharide (LPS).
Methods: Dynamic small-animal PET scans with [(18)F]DPA-714 were performed in Wistar rats on a FOCUS-220 system for up to 3 h.
Objective: The goal of this study was to measure functional and structural aspects of local neuroinflammation induced by intracerebral injection of lipopolysaccharide (LPS) in rats using TSPO microPET imaging with [(18)F]DPA-714, magnetic resonance imaging (MRI), in vitro autoradiography and immunohistochemistry (IHC) in order to characterize a small animal model for screening of new PET tracers targeting neuroinflammation.
Methods: Rats were injected stereotactically with LPS (50 μg) in the right striatum and with saline in the left striatum. [(18)F]DPA-714 microPET, MRI, in vitro autoradiography and IHC studies were performed at different time points after LPS injection for 1 month.
As [(18)F]fluoride is a starting reagent in the radiosynthesis of most fluorine-18 labeled positron emission tomography (PET) tracers, its chromatographic behavior on reversed phase (RP) HPLC columns is important for the purification performance and accuracy of RP HPLC quality control methods. We have investigated the chromatographic behavior and recovery of [(18)F]fluoride as a function of the type and brand of RP HPLC column, the pH and the composition of the mobile phase. Elution and elution profile of [(18)F]fluoride from six RP-HPLC columns (Waters XBridge C18 3 mm × 100 mm 3.
View Article and Find Full Text PDFNeuroinflammation is a well-orchestrated, dynamic, multicellular process playing a major role in neurodegenerative disorders. The microglia which make up the innate immune system of the central nervous system are key cellular mediators of neuroinflammatory processes. In normal condition they exert a protective function, providing tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors.
View Article and Find Full Text PDF