Theoretical research into many-body quantum systems has mostly focused on regular structures which have a small, simple unit cell and where a vanishingly small fraction of the pairs of the constituents directly interact. Motivated by advances in control over the pairwise interactions in many-body simulators, we determine the fate of spin systems on more general, arbitrary graphs. Placing the minimum possible constraints on the underlying graph, we prove how, with certainty in the thermodynamic limit, such systems behave like a single collective spin.
View Article and Find Full Text PDFUnderstanding turbulence is key to our comprehension of many natural and technological flow processes. At the heart of this phenomenon lies its intricate multiscale nature, describing the coupling between different-sized eddies in space and time. Here we analyze the structure of turbulent flows by quantifying correlations between different length scales using methods inspired from quantum many-body physics.
View Article and Find Full Text PDFWe introduce the concept of a squeezed laser, in which a squeezed cavity mode develops a macroscopic photonic occupation due to stimulated emission. Above the lasing threshold, the emitted light retains both the spectral purity of a laser and the photon correlations characteristic of quadrature squeezing. Our proposal, implementable in optical setups, relies on a combination of the parametric driving of the cavity and the excitation by a broadband squeezed vacuum to achieve lasing behavior in a squeezed cavity mode.
View Article and Find Full Text PDFSpin-charge separation (SCS) is a striking manifestation of strong correlations in low-dimensional quantum systems, whereby a fermion splits into separate spin and charge excitations that travel at different speeds. Here, we demonstrate that periodic driving enables control over SCS in a Hubbard system near half filling. In one dimension, we predict analytically an exotic regime where charge travels slower than spin and can even become "frozen," in agreement with numerical calculations.
View Article and Find Full Text PDFWe demonstrate how virtual scattering of laser photons inside a cavity via two-photon processes can induce controllable long-range electron interactions in two-dimensional materials. We show that laser light that is red (blue) detuned from the cavity yields attractive (repulsive) interactions whose strength is proportional to the laser intensity. Furthermore, we find that the interactions are not screened effectively except at very low frequencies.
View Article and Find Full Text PDFNonstationary longtime dynamics was recently observed in a driven two-component Bose-Einstein condensate coupled to an optical cavity [N. Dogra, M. Landini, K.
View Article and Find Full Text PDFWe investigate long-range pairing interactions between ultracold fermionic atoms confined in an optical lattice which are mediated by the coupling to a cavity. In the absence of other perturbations, we find three degenerate pairing symmetries for a two-dimensional square lattice. By tuning a weak local atomic interaction via a Feshbach resonance or by tuning a weak magnetic field, the superfluid system can be driven from a topologically trivial s wave to topologically ordered, chiral superfluids containing Majorana edge states.
View Article and Find Full Text PDFWe investigate electron paring in a two-dimensional electron system mediated by vacuum fluctuations inside a nanoplasmonic terahertz cavity. We show that the structured cavity vacuum can induce long-range attractive interactions between current fluctuations which lead to pairing in generic materials with critical temperatures in the low-kelvin regime for realistic parameters. The induced state is a pair-density wave superconductor which can show a transition from a fully gapped to a partially gapped phase-akin to the pseudogap phase in high-T_{c} superconductors.
View Article and Find Full Text PDFThe assumption that quantum systems relax to a stationary state in the long-time limit underpins statistical physics and much of our intuitive understanding of scientific phenomena. For isolated systems this follows from the eigenstate thermalization hypothesis. When an environment is present the expectation is that all of phase space is explored, eventually leading to stationarity.
View Article and Find Full Text PDFWe show that efficient norm-conserving pseudopotentials for electronic structure calculations can be obtained from a polynomial Ansatz for the potential. Our pseudopotential is a polynomial of degree ten in the radial variable and fulfils the same smoothness conditions imposed by the Troullier-Martins method (TM) (1991 Phys. Rev.
View Article and Find Full Text PDFWe present an experimental demonstration of converting a microwave field to an optical field via frequency mixing in a cloud of cold ^{87}Rb atoms, where the microwave field strongly couples to an electric dipole transition between Rydberg states. We show that the conversion allows the phase information of the microwave field to be coherently transferred to the optical field. With the current energy level scheme and experimental geometry, we achieve a photon-conversion efficiency of ∼0.
View Article and Find Full Text PDFWe show how to implement topological or Thouless pumping of interacting photons in one-dimensional nonlinear resonator arrays by simply modulating the frequency of the resonators periodically in space and time. The interplay between the interactions and the adiabatic modulations enables robust transport of Fock states with few photons per site. We analyze the transport mechanism via an effective analytic model and study its topological properties and its protection to noise.
View Article and Find Full Text PDFWe show that the dipole-dipole interaction between three identical Rydberg atoms can give rise to bound trimer states. The microscopic origin of these states is fundamentally different from Efimov physics. Two stable trimer configurations exist where the atoms form the vertices of an equilateral triangle in a plane perpendicular to a static electric field.
View Article and Find Full Text PDFWe show that sizable Abelian and non-Abelian gauge fields arise in the relative motion of two dipole-dipole interacting Rydberg atoms. Our system exhibits two magnetic monopoles for adiabatic motion in one internal two-atom state. These monopoles occur at a characteristic distance between the atoms that is of the order of one micron.
View Article and Find Full Text PDF