Publications by authors named "Dieter Huesken"

Inflammatory cytokines like TNF play a central role in autoimmune disorders such as rheumatoid arthritis. We identified the tyrosine kinase bone marrow kinase on chromosome X (BMX) as an essential component of a shared inflammatory signaling pathway. Transient depletion of BMX strongly reduced secretion of IL-8 in cell lines and primary human cells stimulated by TNF, IL-1β, or TLR agonists.

View Article and Find Full Text PDF

The intracellular signaling pathway by which tumor necrosis factor (TNF) induces its pleiotropic actions is well characterized and includes unique components as well as modules shared with other signaling pathways. In addition to the currently known key effectors, further molecules may however modulate the biological response to TNF. In our attempt to characterize novel regulators of the TNF signaling cascade, we have identified transmembrane protein 9B (TMEM9B, c11orf15) as an important component of TNF signaling and a module shared with the interleukin 1beta (IL-1beta) and Toll-like receptor (TLR) pathways.

View Article and Find Full Text PDF

Background: The mitotic spindle is a complex mechanical apparatus required for accurate segregation of sister chromosomes during mitosis. We designed a genetic screen using automated microscopy to discover factors essential for mitotic progression. Using a RNA interference library of 49,164 double-stranded RNAs targeting 23,835 human genes, we performed a loss of function screen to look for small interfering RNAs that arrest cells in metaphase.

View Article and Find Full Text PDF

The high sequence identity observed between UNC-93B of mouse and human imply common evolutionary ancestors and a conserved function. A nonconservative point mutation in the mouse Unc93b1 gene has been associated with defective Toll-like receptor (TLR) signaling and impaired major histocompatibility complex (MHC) I and II restricted antigen responses. Like murine UNC-93B, the human homologue is predicted to form 12 transmembrane domains, and it localizes to the endoplasmic reticulum.

View Article and Find Full Text PDF

RNA interference (RNAi) is a natural mechanism for regulating gene expression, which exists in plants, invertebrates, and mammals. We investigated whether non-viral infusion of short interfering RNA (siRNA) by the intracerebroventricular route would enable a sequence-specific gene knockdown in the mouse brain and whether the knockdown translates into disease-relevant behavioral changes. Initially, we targeted enhanced green fluorescent protein (EGFP) in mice overexpressing EGFP.

View Article and Find Full Text PDF

Human cells have evolved complex signaling networks to coordinate the cell cycle. A detailed understanding of the global regulation of this fundamental process requires comprehensive identification of the genes and pathways involved in the various stages of cell-cycle progression. To this end, we report a genome-wide analysis of the human cell cycle, cell size, and proliferation by targeting >95% of the protein-coding genes in the human genome using small interfering RNAs (siRNAs).

View Article and Find Full Text PDF

Sphingosine-1-phosphate, a lipid mediator produced by sphingosine kinases, regulates diverse cellular processes, ranging from cell growth and survival to effector functions, such as proinflammatory mediator synthesis. Using human A549 epithelial lung carcinoma cells as a model system, we observed transient upregulation of sphingosine kinase type 1 (SPHK1) enzyme activity upon stimulation with both TNF-alpha or IL-1beta. This transient activation of SPHK1 was found to be required for cytokine-induced COX-2 transcription and PGE2 production, since not only specific siRNA (abolishing both basal and induced SPHK1 enzyme activity), but also a dominant-negative SPHK1 mutant (suppressing induced SPHK1 activity only) both reduced COX-2 and PGE2.

View Article and Find Full Text PDF

The largest gene knock-down experiments performed to date have used multiple short interfering/short hairpin (si/sh)RNAs per gene. To overcome this burden for design of a genome-wide siRNA library, we used the Stuttgart Neural Net Simulator to train algorithms on a data set of 2,182 randomly selected siRNAs targeted to 34 mRNA species, assayed through a high-throughput fluorescent reporter gene system. The algorithm, (BIOPREDsi), reliably predicted activity of 249 siRNAs of an independent test set (Pearson coefficient r = 0.

View Article and Find Full Text PDF

Cellular levels of key regulatory proteins are controlled via ubiquitination and subsequent degradation. Deubiquitinating enzymes or isopeptidases can potentially prevent targeted destruction of protein substrates through deubiquitination prior to proteasomal degradation. However, only one deubiquitinating enzyme to date has been matched to a specific substrate in mammalian cells and shown to functionally modify it.

View Article and Find Full Text PDF