The process of water adsorption on a dehydrated Cu(3)(BTC)(2) (copper (II) benzene 1,3,5-tricarboxylate) metal-organic framework (MOF) was studied with (1)H and (13)C solid-state NMR. Different relative amounts of water (0.5, 0.
View Article and Find Full Text PDFLithium makes the difference: A simple strategy for the synthesis of lithium-doped porous metal-organic frameworks (MOFs) is developed (see structure; C black, O red, AlO(6) blue octahedra), thus paving the way for the facile preparation of lithium-doped MOFs. Moreover, the significant increase in hydrogen adsorption predicted by theoretical calculations is observed.
View Article and Find Full Text PDFAn efficient method is described for the preparation of phase-pure columnar mesoporous silica nanosystems within the channels of anodic alumina membranes (AAM) via evaporation-induced self-assembly (EISA). Upon the basis of a systematic investigation of the effects of interfacial interactions and different synthesis parameters on the resulting hierarchical mesophase, a salt-induced phase transformation was developed for efficient structural control. Samples with a columnar hexagonal 2D structure along the vertical channels of the AAM can be produced with ionic CTAB as template.
View Article and Find Full Text PDFThe metal organic framework material Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate) has been synthesized using different routes: under solvothermal conditions in an autoclave, under atmospheric pressure and reflux, and by electrochemical reaction. Although the compounds display similar structural properties as evident from the powder X-ray diffraction (XRD) patterns, they differ largely in specific surface area and total pore volume. Thermogravimetric and chemical analysis support the assumption that pore blocking due to trimesic acid and/or methyltributylammoniummethylsulfate (MTBS) which has been captured in the pore system during reaction is a major problem for the electrochemically synthesized samples.
View Article and Find Full Text PDF