Publications by authors named "Dieter Heermann"

Preserving the genomic integrity stands a fundamental necessity, primarily achieved by the DNA repair proteins through their continuous patrolling on the DNA in search of lesions. However, comprehending how even a single base-pair lesion can be swiftly and specifically recognized amidst millions of base-pair sites remains a formidable challenge. In this study, we employ extensive molecular dynamics simulations using an appropriately tuned model of both protein and DNA to probe the underlying molecular principles.

View Article and Find Full Text PDF

Nucleoid associated proteins (NAPs) maintain the architecture of bacterial chromosomes and regulate gene expression. Thus, their role as transcription factors may involve three-dimensional chromosome re-organisation. While this model is supported by in vitro studies, direct in vivo evidence is lacking.

View Article and Find Full Text PDF

Nucleosome positioning plays an important role in crucial biological processes such as replication, transcription, and gene regulation. It has been widely used to predict the genome's function and chromatin organisation. So far, the studies of patterns in nucleosome positioning have been limited to transcription start sites, CTCFs binding sites, and some promoter and loci regions.

View Article and Find Full Text PDF

No systematic method exists to derive inter-nucleosomal potentials between nucleosomes along a chromosome consistently across a given genome. Such potentials can yield information on nucleosomal ordering, thermal as well as mechanical properties of chromosomes. Thus, indirectly, they shed light on a possible mechanical genomic code along a chromosome.

View Article and Find Full Text PDF

We calculated the patterns for the CCCTC transcription factor (CTCF) binding sites across many genomes on a first principle approach. The validation of the first principle method was done on the human as well as on the mouse genome. The predicted human CTCF binding sites are consistent with the consensus sequence, ChIP-seq data for the K562 cell, nucleosome positions for IMR90 cell as well as the CTCF binding sites in the mouse HOXA gene.

View Article and Find Full Text PDF

Nucleoprotein complexes play an integral role in genome organization of both eukaryotes and prokaryotes. Apart from their role in locally structuring and compacting DNA, several complexes are known to influence global organization by mediating long-range anchored chromosomal loop formation leading to spatial segregation of large sections of DNA. Such megabase-range interactions are ubiquitous in eukaryotes, but have not been demonstrated in prokaryotes.

View Article and Find Full Text PDF

Background: The main function of telomerase is at the telomeres but under adverse conditions telomerase can bind to internal regions causing deleterious effects as observed in cancer cells.

Results: By mapping the global occupancy of the catalytic subunit of telomerase (Est2) in the budding yeast Saccharomyces cerevisiae, we reveal that it binds to multiple guanine-rich genomic loci, which we termed "non-telomeric binding sites" (NTBS). We characterize Est2 binding to NTBS.

View Article and Find Full Text PDF

DNA double-strand breaks (DSBs), known as the most severe damage in chromatin, were induced in breast cancer cells and normal skin fibroblasts by 2 Gy ionizing photon radiation. In response to DSB induction, phosphorylation of the histone variant H2AX to γH2AX was observed in the form of foci visualized by specific antibodies. By means of super-resolution single-molecule localization microscopy (SMLM), it has been recently shown in a first article about these data that these foci can be separated into clusters of about the same size (diameter ~400 nm).

View Article and Find Full Text PDF

In cancer therapy, the application of (fractionated) harsh radiation treatment is state of the art for many types of tumors. However, ionizing radiation is a "double-edged sword"-it can kill the tumor but can also promote the selection of radioresistant tumor cell clones or even initiate carcinogenesis in the normal irradiated tissue. Individualized radiotherapy would reduce these risks and boost the treatment, but its development requires a deep understanding of DNA damage and repair processes and the corresponding control mechanisms.

View Article and Find Full Text PDF

The chromosomal replication origin region () of characterised bacteria is dynamically positioned throughout the cell cycle. In slowly growing , is maintained at mid-cell from birth until its replication, after which newly replicated sister s move to opposite quarter positions. Here, we provide an explanation for positioning based on the self-organisation of the Structural Maintenance of Chromosomes complex, MukBEF, which forms dynamically positioned clusters on the chromosome.

View Article and Find Full Text PDF

In order to interpret data from Hi-C studies genome-wide contact probability maps need to be translated into models of functional 3D genome organization. Here, we first present an overview of computational methods to analyze contact probability maps in terms of features such as the level and shape of compartmentalization. Next, we describe approaches to modeling 3D genome organization based on Hi-C data.

View Article and Find Full Text PDF

The study of three-dimensional genome organization has recently gained much attention in the context of novel techniques for detecting genome-wide contacts using next-generation sequencing. These genome-wide chromosome conformation capture-based methods, such as Hi-C, give a deep topological insight into the architecture of the genome inside the cell. This chapter reviews the steps to process next-generation Hi-C sequencing data to generate a final contact probability map.

View Article and Find Full Text PDF

DNA double strand breaks (DSB) are the most severe damages in chromatin induced by ionizing radiation. In response to such environmentally determined stress situations, cells have developed repair mechanisms. Although many investigations have contributed to a detailed understanding of repair processes, e.

View Article and Find Full Text PDF

The segmentation of cell nuclei is an important step towards the automated analysis of histological images. The presence of a large number of nuclei in whole-slide images necessitates methods that are computationally tractable in addition to being effective. In this work, a method is developed for the robust segmentation of cell nuclei in histological images based on the principles of persistent homology.

View Article and Find Full Text PDF

We present the synthesis, structure, magnetic properties, as well as the Mössbauer and electron paramagnetic resonance studies of a ring-shaped [FeLn(Htea)(μ-N)(N)(piv)] (Ln = Y 1, Gd 2, Tb 3, Dy 4, Ho 5, Er, 6) coordination cluster. The Dy, Tb, and Ho analogues show blocking of the magnetization at low temperatures without applied fields. The anisotropy of the 3d ion and the exchange interaction between 3d and 4f ions in FeLn complexes are unambiguously determined by high-field/high-frequency electron paramagnetic resonance measurements at low temperature.

View Article and Find Full Text PDF

Viral channel forming proteins (VCPs) have been discovered in the late 70s and are found in many viruses to date. Usually they are small and have to assemble to form channels which depolarize the lipid membrane of the host cells. Structural information is just about to emerge for just some of them.

View Article and Find Full Text PDF

The conformational properties of unbound multi-Cys2 His2 (mC2H2) zinc finger proteins, in which zinc finger domains are connected by flexible linkers, are studied by a multiscale approach. Three methods on different length scales are utilized. First, atomic detail molecular dynamics simulations of one zinc finger and its adjacent flexible linker confirmed that the zinc finger is more rigid than the flexible linker.

View Article and Find Full Text PDF

It has been well established that the architecture of chromatin in cell nuclei is not random but functionally correlated. Chromatin damage caused by ionizing radiation raises complex repair machineries. This is accompanied by local chromatin rearrangements and structural changes which may for instance improve the accessibility of damaged sites for repair protein complexes.

View Article and Find Full Text PDF

The study of the three-dimensional organization of chromatin has recently gained much focus in the context of novel techniques for detecting genome-wide contacts using next-generation sequencing. These chromosome conformation capture-based methods give a deep topological insight into the architecture of the genome inside the nucleus. Several recent studies observe a compartmentalization of chromatin interactions into spatially confined domains.

View Article and Find Full Text PDF

Motivated by the noncovalent binding of polypeptides to DNA, the adsorption of a flexible polymer to a rigid periodic copolymer is studied in two dimensions and three dimensions. The fraction of adsorbed monomers, the specific heat, and the Binder cumulant are analyzed and compared with analytical results for an ideal chain. As the interaction strength ε increases, a second-order phase transition occurs from a nonadsorbed state to an adsorbed state, in two dimensions, and a higher-order transition occurs in three dimensions.

View Article and Find Full Text PDF

The multi-Cys2His2 (mC2H2) zinc finger protein, like CTCF, plays a central role in the three-dimensional organization of chromatin and gene regulation. The interaction between DNA and mC2H2 zinc finger proteins becomes crucial to better understand how CTCF dynamically shapes the chromatin structure. Here, we study a coarse-grained model of the mC2H2 zinc finger proteins in complexes with DNA, and in particular, we study how a mC2H2 zinc finger protein binds to and searches for its target DNA loci.

View Article and Find Full Text PDF

Folding of the chromosomal fibre in interphase nuclei is an important element in the regulation of gene expression. For instance, physical contacts between promoters and enhancers are a key element in cell-type-specific transcription. We know remarkably little about the principles that control chromosome folding.

View Article and Find Full Text PDF

To understand how interphase chromatin is organized in eukaryotic cell nuclei, it is essential to understand what kind of interactions influence the nuclear architecture and to what extent. Using a mesoscale model that incorporates chromatin-chromatin interactions as well as binding of chromatin to the nuclear envelope, we can show that chromatin loops and envelope bonds are major players in genome organization because they largely affect the entropy of the chromatin fibres. The model allows us to consistently reproduce multiple characteristic chromatin parameters in agreement with experimental data.

View Article and Find Full Text PDF

We introduce a new measure for assessing similarity among chemical structures, based on well-established computational-topology algorithms. We argue that although the method considers geometry, it is more than a mere geometric similarity measure, as it takes into account, on different geometric scales, the important topological features of the compared structures. We prove that our measure is rigorous and complies with the proper mathematical requirements.

View Article and Find Full Text PDF