Invest Ophthalmol Vis Sci
January 2025
Purpose: To elucidate the mechanical properties of the bovine lens cortical membrane (CM), the nuclear membrane (NM) containing cholesterol bilayer domains (CBDs), and whole bovine lenses.
Methods: The total lipids (lipids plus cholesterol) from the cortex and nucleus of a single bovine lens were isolated using the monophasic methanol extraction method. Supported CMs and NMs were prepared from total lipids extracted from the cortex and nucleus, respectively, using a rapid solvent exchange method and probe-tip sonication, followed by the fusion of unilamellar vesicles on a flat, freshly cleaved mica surface.
Highly concentrated lens proteins, mostly β- and γ-crystallin, are responsible for maintaining the structure and refractivity of the eye lens. However, with aging and cataract formation, β- and γ-crystallin are associated with the lens membrane or other lens proteins forming high-molecular-weight proteins, which further associate with the lens membrane, leading to light scattering and cataract development. The mechanism by which β- and γ-crystallin are associated with the lens membrane is unknown.
View Article and Find Full Text PDFSeveral studies reported that α-crystallin concentrations in the eye lens cytoplasm decrease with a corresponding increase in membrane-bound α-crystallin with age and cataracts. The influence of the lipid and cholesterol composition difference between cortical membrane (CM) and nuclear membrane (NM) on α-crystallin binding to membranes is still unclear. This study uses the electron paramagnetic resonance (EPR) spin-labeling method to investigate the α-crystallin binding to bovine CM and NM derived from the total lipids extracted from a single lens.
View Article and Find Full Text PDF