Publications by authors named "Dieter D'Hoedt"

Background And Purpose: The µ-conopeptide family is defined by its ability to block voltage-gated sodium channels (VGSCs), a property that can be used for the development of myorelaxants and analgesics. We characterized the pharmacology of a new µ-conopeptide (µ-CnIIIC) on a range of preparations and molecular targets to assess its potential as a myorelaxant.

Experimental Approach: µ-CnIIIC was sequenced, synthesized and characterized by its direct block of elicited twitch tension in mouse skeletal muscle and action potentials in mouse sciatic and pike olfactory nerves.

View Article and Find Full Text PDF

Discovery of proteins expressed in the central nervous system sharing the three-finger structure with snake α-neurotoxins provoked much interest to their role in brain functions. Prototoxin LYNX1, having homology both to Ly6 proteins and three-finger neurotoxins, is the first identified member of this family membrane-tethered by a GPI anchor, which considerably complicates in vitro studies. We report for the first time the NMR spatial structure for the water-soluble domain of human LYNX1 lacking a GPI anchor (ws-LYNX1) and its concentration-dependent activity on nicotinic acetylcholine receptors (nAChRs).

View Article and Find Full Text PDF

Snake venoms are a mixture of pharmacologically active proteins and polypeptides that have led to the development of molecular probes and therapeutic agents. Here, we describe the structural and functional characterization of a novel neurotoxin, haditoxin, from the venom of Ophiophagus hannah (King cobra). Haditoxin exhibited novel pharmacology with antagonism toward muscle (alphabetagammadelta) and neuronal (alpha(7), alpha(3)beta(2), and alpha(4)beta(2)) nicotinic acetylcholine receptors (nAChRs) with highest affinity for alpha(7)-nAChRs.

View Article and Find Full Text PDF

alpha-Conotoxins interact with nicotinic acetylcholine receptors (nAChRs) and acetylcholine-binding proteins (AChBPs) at the sites for agonists/competitive antagonists. alpha-Conotoxins blocking muscle-type or alpha7 nAChRs compete with alpha-bungarotoxin. However, alpha-conotoxin ImII, a close homolog of the alpha7 nAChR-targeting alpha-conotoxin ImI, blocked alpha7 and muscle nAChRs without displacing alpha-bungarotoxin (Ellison et al.

View Article and Find Full Text PDF

Background: Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that participate in many physiological functions. Receptors result from the assembly of five homologous or heterologous subunits that form the ligand-binding site and an ionic pore. In vertebrates, 17 subunits have been identified, alpha (1 - 10), beta (1 - 4), gamma, delta and epsilon.

View Article and Find Full Text PDF

Clotrimazole (CLT) is a widely used drug for the topical treatment of yeast infections of skin, vagina, and mouth. Common side effects of topical CLT application include irritation and burning pain of the skin and mucous membranes. Here, we provide evidence that transient receptor potential (TRP) channels in primary sensory neurons underlie these unwanted effects of CLT.

View Article and Find Full Text PDF

TRPV4, a member of the vanilloid subfamily of the transient receptor potential (TRP) channels, is activated by a variety of stimuli, including cell swelling, moderate heat, and chemical compounds such as synthetic 4alpha-phorbol esters. TRPV4 displays a widespread expression in various cells and tissues and has been implicated in diverse physiological processes, including osmotic homeostasis, thermo- and mechanosensation, vasorelaxation, tuning of neuronal excitability, and bladder voiding. The mechanisms that regulate TRPV4 in these different physiological settings are currently poorly understood.

View Article and Find Full Text PDF

Small conductance calcium-activated potassium channels (SK, K(Ca)) are a family of voltage-independent K+ channels with a distinct physiology and pharmacology. The bee venom toxin apamin inhibits exclusively the three cloned SK channel subtypes (SK1, SK2, and SK3) with different affinity, highest for SK2, lowest for SK1, and intermediate for SK3 channels. The high selectivity of apamin made it a valuable tool to study the molecular makeup and function of native SK channels.

View Article and Find Full Text PDF

TRPV4 is a cation channel that responds to a variety of stimuli including mechanical forces, temperature, and ligand binding. We set out to identify TRPV4-interacting proteins by performing yeast two-hybrid screens, and we isolated with the avian TRPV4 amino terminus the chicken orthologues of mammalian PACSINs 1 and 3. The PACSINs are a protein family consisting of three members that have been implicated in synaptic vesicular membrane trafficking and regulation of dynamin-mediated endocytotic processes.

View Article and Find Full Text PDF

We have recently shown that the alkaloid methyl-laudanosine blocks SK channel-mediated afterhyperpolarizations (AHPs) in midbrain dopaminergic neurones. However, the relative potency of the compound on the SK channel subtypes and its ability to block AHPs of other neurones were unknown. Using whole-cell patch-clamp experiments in transfected cell lines, we found that the compound blocks SK1, SK2 and SK3 currents with equal potency: its mean IC(50)s were 1.

View Article and Find Full Text PDF

Potassium channels regulate the membrane excitability of neurons, play a major role in shaping action potentials, determining firing patterns and regulating neurotransmitter release, and thus significantly contribute to neuronal signal encoding and integration. This review focuses on the molecular and cellular basis for the specific function of small-conductance calcium-activated potassium channels (SK channels) in the nervous system. SK channels are activated by an intracellular increase of free calcium during action potentials.

View Article and Find Full Text PDF

Two small conductance, calcium-activated potassium channels (SK channels), SK2 and SK3, have been shown to contribute to the afterhyperpolarization (AHP) and to shape the firing behavior in neurons for example in the hippocampal formation, the dorsal vagal nucleus, the subthalamic nucleus, and the cerebellum. In heterologous expression systems, SK2 and SK3 currents are blocked by the bee venom toxin apamin, just as well as the corresponding neuronal AHP currents. However, the functional role and pharmacological profile of SK1 channels from rat brain (rSK1) is still largely unknown, as so far rSK1 homomeric channels could not be functionally expressed.

View Article and Find Full Text PDF

The biophysical properties of small conductance Ca(2+)-activated K(+) (SK) channels are well suited to underlie afterhyperpolarizations (AHPs) shaping the firing patterns of a conspicuous number of central and peripheral neurons. We have identified a new scorpion toxin (tamapin) that binds to SK channels with high affinity and inhibits SK channel-mediated currents in pyramidal neurons of the hippocampus as well as in cell lines expressing distinct SK channel subunits. This toxin distinguished between the SK channels underlying the apamin-sensitive I(AHP) and the Ca(2+)-activated K(+) channels mediating the slow I(AHP) (sI(AHP)) in hippocampal neurons.

View Article and Find Full Text PDF