Publications by authors named "Dieter Cuypers"

To realize laser-driven high-luminance white light sources, many reflective configurations have been studied, often resulting in a challenging optical design. In this paper it is demonstrated that the efficacy of a transmissive configuration can be significantly enhanced by using a sapphire half-ball lens as out-coupling optic. This lens not only improves efficiency, but also drastically increases the potential light output due to improved heat dissipation from the single-crystal phosphor converter.

View Article and Find Full Text PDF

In a waveguide-type display for augmented reality, the image is injected in the waveguide and extracted in front of the eye appearing superimposed on the real-world scene. An elegant and compact way of coupling these images in and out is by using blazed gratings, which can achieve high diffraction efficiencies. We report the design of blazed gratings for green light (λ = 543 nm) and a diffraction angle of 43°.

View Article and Find Full Text PDF

Microelectrode arrays (MEAs) have proved to be useful tools for characterizing electrically active cells such as cardiomyocytes and neurons. While there exist a number of integrated electronic chips for recording from small populations or even single cells, they rely primarily on the interface between the cells and 2D flat electrodes. Here, an approach that utilizes residual stress-based self-folding to create individually addressable multielectrode interfaces that wrap around the cell in 3D and function as an electrical shell-like recording device is described.

View Article and Find Full Text PDF

Optical beam deflectors based on the combination of cholesteric liquid crystals and polymer micro gratings are reported. Dual frequency cholesteric liquid crystal (DFCh-LC) is adopted to accelerate the switching from the homeotropic state back to the planar state. Polarization independent beam steering components are realized whose transmission versus the polarizing angle only varies 4.

View Article and Find Full Text PDF

Smart hydrogels for biomedical applications are highly researched materials. However, integrating them into a device for implantation is difficult. This paper investigates an integrated delivery device designed to deliver an electro-responsive hydrogel to a target location inside a blood vessel with the purpose of creating an occlusion.

View Article and Find Full Text PDF